227-0085-36L  Projects & Seminars: Genome Sequencing on Mobile Devices

SemesterAutumn Semester 2020
LecturersO. Mutlu
Periodicityevery semester recurring course
Language of instructionEnglish
CommentOnly for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.



Courses

NumberTitleHoursLecturers
227-0085-36 PProjekte & Seminare: Genome Sequencing on Mobile Devices Special students and auditors need a special permission from the lecturers.
Groups are selected in myStudies.
Für den Zugang zum Angebot und zur Einschreibung loggen Sie sich hier ein (mit Ihrem n.ETHZ account): Link
Bitte beachten Sie, dass die Seite jeweils erst zwei Wochen vor Semesterbeginn zugänglich ist und im Verlauf des Semesters wieder abgeschaltet wird. Die Einschreibung ist nur von Freitag vor Semesterbeginn bis zum ersten Freitagmittag im Semester möglich.

To access the offer and to enroll for courses log in (with your n.ethz account): Link
Please note that the P&S-site is accessible no earlier than two weeks before the start of the semester until four weeks after the start of the semester. Enrollment is only possible from Friday before the start of the semester until noon of the first Friday in the semester.

Time: To be arranged with each student
Location: various
3 hrsO. Mutlu

Catalogue data

AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveGenome analysis is the foundation of many scientific and medical discoveries, and serves as a key enabler of personalized medicine. This analysis is currently limited by the inability of existing technologies to read an organism’s complete genome. Instead, a dedicated machine (called sequencer) extracts a large number of shorter random fragments of an organism’s DNA sequence, known as reads. Small, handheld sequencers such as ONT MinION and Flongle make it possible to sequence bacterial and viral genomes in the field, thus facilitating disease outbreak analyses such as COVID-19, Ebola, and Zika. However, large, capable computers are still needed to perform genome assembly, which tries to reassemble read fragments back into an entire genome sequence. This limits the benefits of mobile sequencing and may pose problems in rapid diagnosis of infectious diseases, tracking outbreaks, and near-patient testing. The problem is exacerbated in developing countries and during crises where access to the internet network, cloud services, or data centers is even more limited.

In this course, we will cover the basics of genome analysis to understand the speed-accuracy tradeoff in using computationally-lightweight heuristics versus accurate computationally-expensive algorithms. Such heuristic algorithms typically operate on a smaller dataset that can fit in the memory of today’s mobile device. Students will experimentally evaluate different heuristic algorithms and observe their effect on the end results. This evaluation will give the students the chance to carry out a hands-on project to implement one or more of these heuristic algorithms in their smartphones and help the society by enabling on-site analysis of genomic data.

Prerequisites of the course:
- No prior knowledge in bioinformatics or genome analysis is required.
- A good knowledge in C programming language and programming is required.
- Interest in making things efficient and solving problems

The course is conducted in English.

Course website: Link

Learning Materials
===============
1. A survey on accelerating genome analysis: Link

2. A detailed survey on the state-of-the-art algorithms for sequencing data: Link

3. An example of how to accelerate genomic sequence matching by two orders of magnitude with the help of FPGAs or GPUs: Link

4. An example of how to accelerate read mapping step by an order of magnitude and without using hardware acceleration: Link

5. An example of using a different computing paradigm for accelerating read mapping step and improving its energy consumption: Link

6. Two examples on using software/hardware co-design to accelerate genomic sequence matching by two orders of magnitude: Link Link

7. An example of a purely software method for fast genome sequence analysis: Link

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits3 credits
ExaminersO. Mutlu
Typeungraded semester performance
Language of examinationEnglish
RepetitionRepetition only possible after re-enrolling for the course unit.

Learning materials

No public learning materials available.
Only public learning materials are listed.

Groups

227-0085-36 PProjekte & Seminare: Genome Sequencing on Mobile Devices
GroupG-01

Restrictions

General : Special students and auditors need a special permission from the lecturers
PlacesLimited number of places. Special selection procedure.
Beginning of registration periodRegistration possible from 18.09.2020
PriorityRegistration for the course unit is only possible for the primary target group
Primary target groupElectrical Engin. + Information Technology BSc (228000)
Waiting listuntil 25.09.2020
End of registration periodRegistration only possible until 25.09.2020

Offered in

ProgrammeSectionType
Electrical Engineering and Information Technology BachelorProjects & Seminars Autum Semester 2020)WInformation