402-0205-00L  Quantum Mechanics I

SemesterAutumn Semester 2020
LecturersG. M. Graf
Periodicityyearly recurring course
Language of instructionGerman



Courses

NumberTitleHoursLecturers
402-0205-00 VQuantenmechanik I
«Hybrid»
Studierende besuchen die Lehrveranstaltung alternierende eine Woche in Präsenz, die folgende Woche online.
Erste Unterrichtswoche Präsenz: Nachname beginnend mit «A» bis «L»
Erste Unterrichtswoche Online: Nachname beginnend mit «M» bis «Z»
danach alternierend.
3 hrs
Thu11:45-12:30HPV G 4 »
Sat09:45-11:30HPV G 4 »
G. M. Graf
402-0205-00 UQuantenmechanik I
Do 10-12 oder Do 16-18

Die Präsenzbelegung der Übungen wird über Moodle gesteuert.
2 hrs
Thu09:45-11:30HCI H 8.1 »
15:45-17:30HIL E 10.1 »
15:45-17:30HPK D 24.2 »
15:45-17:30HPV G 4 »
16:00-18:00ON LI NE »
G. M. Graf

Catalogue data

AbstractIntroduction to quantum theory: Wave mechanics, Schrödinger equation, angular momentum, central force problems, potential scattering, spin. General structure: Hilbert space, states, observables, equation of motion, density matrix, symmetries, Schrödinger and Heisenberg picture. Approximate methods:
perturbation theory, variational approach, quasi-classics.
Learning objectiveIntroduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems.
ContentThe beginnings of quantum theory with Planck, Einstein and Bohr; wave and matrix mechanics; the formalism of quantum mechanics (states and observables, Hilbert spaces and operators), the measurement process, symmetries (translation, rotations), quantum mechanics in one dimension (bound states, scattering problems, tunnel effect, resonances) as well as in three (central force problems, potential scattering), perturbation theory, variational methods, angular momentum and spin; relationship of QM to classical physics; possibly composite systems and entanglement.
Lecture notesAuf Moodle, in deutscher Sprache
LiteratureG. Baym, Lectures on Quantum Mechanics
E. Merzbacher, Quantum Mechanics
L.I. Schiff, Quantum Mechanics
R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals
J.J. Sakurai: Modern Quantum Mechanics
A. Messiah: Quantum Mechanics I
S. Weinberg: Lectures on Quantum Mechanics

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits10 credits
ExaminersG. M. Graf
Typesession examination
Language of examinationGerman
RepetitionThe performance assessment is offered every session. Repetition possible without re-enrolling for the course unit.
Mode of examinationwritten 180 minutes
Written aidszwei A4 Seiten handgeschrieben
This information can be updated until the beginning of the semester; information on the examination timetable is binding.

Learning materials

 
Main linkInformation
Only public learning materials are listed.

Groups

No information on groups available.

Restrictions

There are no additional restrictions for the registration.

Offered in

ProgrammeSectionType
Interdisciplinary Sciences BachelorElectivesWInformation
Mathematics BachelorCore Courses: Further Application-Oriented FieldsWInformation
Mathematics MasterBachelor Core Courses: Applied Mathematics ...WInformation
Physics BachelorCore Courses in Theoretical PhysicsWInformation
Physics BachelorExamination Block IIIOInformation
Quantum Engineering MasterPhysics Core CoursesWInformation
Computational Science and Engineering MasterPhysicsWInformation