Light and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition. Deep learning and Convolutional Neural Networks.
Lernziel
Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
Inhalt
This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning. The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer. The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.
Skript
Course material Script, computer demonstrations, exercises and problem solutions
Voraussetzungen / Besonderes
Prerequisites: Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux. The course language is English.
Leistungskontrolle
Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Die Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodus
schriftlich 120 Minuten
Zusatzinformation zum Prüfungsmodus
Different parts of the lecture will be assessed in a maximum 2 hours written exam in English. Doctoral students who participate at the course to earn ECTS points will receive a “Testat” without taking the written examination if their department rules allow this and provided they successfully complete the three exercises (interim oral examination). All other students must take the written examination. Further information will be provided after the course registration.
Hilfsmittel schriftlich
Keine
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.