327-2222-00L  Soft Materials: from Fundamentals to Applications

SemesterSpring Semester 2020
LecturersL. Isa
Periodicityyearly recurring course
CourseDoes not take place this semester.
Language of instructionEnglish


AbstractThis course consists of a series of lectures, each focusing on a specific fundamental concept previously encountered by the student during basic courses, and on its direct relevance for soft materials and their applications (e.g. colloidal crystals, dense suspensions, emulsions, foams and liquid crystals).
ObjectiveSoft materials, such as complex fluids, polymers, liquid crystals, foams etc. are of paramount importance in many technological applications and consumer products. Additionally, they also work as "open laboratories", where basic phenomena, normally studied at the atomic or molecular length and time scales, can be easily and directly observed at the micro and nanoscale.
The aim of this course is to offer the student the possibility to connect fundamental concepts (e.g. entropy or thermodynamic equilibrium), which too often stay as abstract constructions, to direct examples of soft materials. At the end of the course the student will have acquired advanced knowledge of soft matter systems and strengthened his/her background in basic physics and physical chemistry.
ContentEach lecture will be divided into two parts. In the first part a specific concept will be introduced and discussed. In the second part the implications for soft materials will be presented, often with practical demonstration in the class.
Examples are:
- Entropy and phase transitions; application to colloidal crystals.
- Thermodynamics versus kinetics; application to Pickering emulsions.
- Excluded volume; application to liquid crystals.
The detailed series will be presented at the beginning of the course.
Lecture notesNotes will be handed out during the lectures and published online before each lecture.
LiteratureProvided in the lecture notes.
Prerequisites / NoticePre-existing notions of physics, thermodynamics, physical chemistry and statistical mechanics are necessary