227-0104-00L Communication and Detection Theory
Semester | Spring Semester 2020 |
Lecturers | A. Lapidoth |
Periodicity | yearly recurring course |
Language of instruction | English |
Abstract | This course teaches the foundations of modern digital communications and detection theory. Topics include the geometry of the space of energy-limited signals; the baseband representation of passband signals, spectral efficiency and the Nyquist Criterion; the power and power spectral density of PAM and QAM; hypothesis testing; Gaussian stochastic processes; and detection in white Gaussian noise. |
Learning objective | This is an introductory class to the field of wired and wireless communication. It offers a glimpse at classical analog modulation (AM, FM), but mainly focuses on aspects of modern digital communication, including modulation schemes, spectral efficiency, power budget analysis, block and convolu- tional codes, receiver design, and multi- accessing schemes such as TDMA, FDMA and Spread Spectrum. |
Content | - Baseband representation of passband signals. - Bandwidth and inner products in baseband and passband. - The geometry of the space of energy-limited signals. - The Sampling Theorem as an orthonormal expansion. - Sampling passband signals. - Pulse Amplitude Modulation (PAM): energy, power, and power spectral density. - Nyquist Pulses. - Quadrature Amplitude Modulation (QAM). - Hypothesis testing. - The Bhattacharyya Bound. - The multivariate Gaussian distribution - Gaussian stochastic processes. - Detection in white Gaussian noise. |
Lecture notes | n/a |
Literature | A. Lapidoth, A Foundation in Digital Communication, Cambridge University Press, 2nd edition (2017) |