Reactor physics calculations for assessing the performance and safety of nuclear power plants are, in practice, carried out using large computer codes simulating different key phenomena. This course provides a basis for understanding state-of-the-art calculational methodologies in the above context.
Lernziel
Students are introduced to advanced methods of reactor physics analysis for nuclear power plants.
Inhalt
Cross-sections preparation. Slowing down theory. Differential form of the neutron transport equation and method of discrete ordinates (Sn). Integral form of the neutron transport equation and method of characteristics. Method of Monte-Carlo. Modeling of fuel depletion. Lattice calculations and cross-section parametrization. Modeling of full core neutronics using nodal methods. Modeling of feedbacks from fuel behavior and thermal hydraulics. Point and spatial reactor kinetics. Uncertainty and sensitivity analysis.
Skript
Hand-outs will be provided on the website.
Literatur
Chapters from various text books on Reactor Theory, etc.