365-1120-00L  Executive Business Analytics

SemesterSpring Semester 2020
LecturersS. Feuerriegel
Periodicityyearly recurring course
Language of instructionEnglish
CommentExclusively for MAS MTEC students (2nd semester).


AbstractThis course will combine cutting edge thinking about Artificial Intelligence & Machine Learning, with application use cases and a practical framework that will enable participants to determine and plan their own workplace application.The focus is less on the how (i.e. how the algorithms function) but more on techniques to identify suitable use cases.
Learning objectiveObjective 1 (Managerial aspects): Understand the processes and challenges of analytics-related projects
• Being able to identify applications for analytics in corporations and organizations that create value
• Being able to list implications for management when undertaking a project involving business analytics
• Being able to to describe the data mining process CRISP-DM to their actual setting

Objective 2 (Methodological challenges): Understand common methods for performing business analytics
• Being able to name common methods for business analytics, as well as their underlying concepts
• Being able to contrast supervised vs. unsupervised learning (clustering)
ContentPrior to the start of the Information Age in the late 20th century, companies back then lacked the computing capabilities necessary for data to be analyzed, and as a result, decisions primarily originated not from knowledge but from intuition. With the emergence of ubiquitous computing technology, company decisions nowadays rely strongly on computer-aided “Business Analytics”.

As examples, machine Learning algorithms enable detection of patterns and predict or recommend actions by processing large data sets of information, instead of response to instructions. Deep learning is a type of machine learning using Neural Networks to process huge amounts of data through successive layers of learning to arrive at a conclusion or recommendation.

This highly interactive and application driven course will lay a foundation of understanding of these cutting-edge concepts, followed by a contemporary Case Study of relevance to marketplace application. The class dialog will bring out the underlying complexities of under-standing business challenges and determining the suitability of AI solutions thus enhancing participants AI/ML decision making.

This will be followed by a participative discussion to connect the knowledge and case study application to the participants own experiences. Based on it, we jointly define the criteria for the type of situations where AI and ML are appropriate and develop potential solutions.

Developing a technological solution to an AI challenge is only the first step. The practitioner will need to recognize implementation as a potentially disruptive change that will require careful change management leadership for effective implementation. Given the novelty of the theme and the rare experience in industry, this part will be accompanied by insights from practitioners.
Lecture notesThe following technical aspects will be covered from a methodological angle:
- Forecasting: How can historical values be used to make predictions of future developments ahead of time? How can firms utilize unstructured data to facilitate the predictive performance? What are metrics to evaluate the performance of predictions?
- Data analysis: How can one derive explanatory power in order to study the response to an input?
- Clustering: How can businesses group consumers into distinct categories according to their purchase behavior?
- Dimension reduction: How can businesses simplify a large amount of indicators into a smaller subset with similar characteristics?
LiteratureThe course involves two pre-readings that students are kindly asked to read before the first class:

Reading 1
DeepMind creates algorithm to predict kidney damage in advance
https://on.ft.com/332Cx6V

Reading 2
Building the AI-Powered Organization
https://hbr.org/2019/07/building-the-ai-powered-organization
Prerequisites / NoticeStudents, who have already successfully completed the course “Business Analytics (363-1098-00)” can't register again.