401-3462-00L  Functional Analysis II

SemesterSpring Semester 2020
LecturersM. Struwe
Periodicityyearly recurring course
Language of instructionEnglish



Courses

NumberTitleHoursLecturers
401-3462-00 VFunctional Analysis II4 hrs
Mon10:15-12:00HG G 5 »
Wed10:15-12:00HG G 43 »
Thu13:15-15:00HG G 5 »
Fri13:15-15:00HG G 43 »
25.05.13:15-15:00HG G 43 »
26.05.14:15-16:00HG G 43 »
27.05.10:15-12:00HG G 43 »
29.05.10:15-12:00HG G 43 »
M. Struwe
401-3462-00 UFunctional Analysis II
Groups are selected in myStudies.
1 hrs
Mon09:15-10:00HG E 33.3 »
09:15-10:00HG F 26.5 »
M. Struwe

Catalogue data

AbstractSobolev spaces, weak solutions of elliptic boundary value problems, elliptic regularity
Learning objectiveAcquiring the methods for solving elliptic boundary value problems, Sobolev spaces, Schauder estimates
Lecture notesFunktionalanalysis II, Michael Struwe
LiteratureFunktionalanalysis II, Michael Struwe

Functional Analysis, Spectral Theory and Applications.
Manfred Einsiedler and Thomas Ward, GTM Springer 2017
Prerequisites / NoticeFunctional Analysis I and a solid background in measure theory, Lebesgue integration and L^p spaces.

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits10 credits
ExaminersM. Struwe
Typesession examination
Language of examinationEnglish
RepetitionThe performance assessment is offered every session. Repetition possible without re-enrolling for the course unit.
Mode of examinationoral 30 minutes
This information can be updated until the beginning of the semester; information on the examination timetable is binding.

Learning materials

 
Main linklecture homepage
Only public learning materials are listed.

Groups

401-3462-00 UFunctional Analysis II
GroupsG-01
Mon09:15-10:00HG E 33.3 »
G-02
Mon09:15-10:00HG F 26.5 »

Restrictions

There are no additional restrictions for the registration.

Offered in

ProgrammeSectionType
Doctoral Department of MathematicsGraduate SchoolWInformation
High-Energy Physics (Joint Master with EP Paris)Optional Subjects in MathematicsWInformation
Mathematics BachelorCore Courses: Pure MathematicsWInformation
Mathematics MasterCore Courses: Pure MathematicsWInformation
Physics MasterSelection: MathematicsWInformation