227-0420-00L  Information Theory II

SemesterFrühjahrssemester 2020
DozierendeA. Lapidoth
Periodizität2-jährlich wiederkehrende Veranstaltung
LehrveranstaltungFindet dieses Semester nicht statt.
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
227-0420-00 VInformation Theory II
Findet dieses Semester nicht statt.
2 Std.A. Lapidoth
227-0420-00 UInformation Theory II
Findet dieses Semester nicht statt.
2 Std.A. Lapidoth

Katalogdaten

KurzbeschreibungThis course builds on Information Theory I. It introduces additional topics in single-user communication, connections between Information Theory and Statistics, and Network Information Theory.
LernzielThe course has two objectives: to introduce the students to the key information theoretic results that underlay the design of communication systems and to equip the students with the tools that are needed to conduct research in Information Theory.
InhaltDifferential entropy, maximum entropy, the Gaussian channel and water filling, the entropy-power inequality, Sanov's Theorem, Fisher information, the broadcast channel, the multiple-access channel, Slepian-Wolf coding, and the Gelfand-Pinsker problem.
Skriptn/a
LiteraturT.M. Cover and J.A. Thomas, Elements of Information Theory, second edition, Wiley 2006

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte6 KP
PrüfendeA. Lapidoth, S. M. Moser
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusmündlich 30 Minuten
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

 
HauptlinkInformation
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Data Science MasterWählbare KernfächerWInformation
Doktorat Departement Informationstechnologie und ElektrotechnikLehrangebot Doktorat und PostdoktoratWInformation
Elektrotechnik und Informationstechnologie MasterKernfächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Elektrotechnik und Informationstechnologie MasterAdvanced Core CoursesWInformation
Mathematik MasterInformation and Communication TechnologyWInformation
Rechnergestützte Wissenschaften BachelorWahlfächerWInformation
Rechnergestützte Wissenschaften MasterWahlfächerWInformation