151-0116-00L High Performance Computing for Science and Engineering (HPCSE) for CSE
Semester | Frühjahrssemester 2020 |
Dozierende | P. Koumoutsakos, S. M. Martin |
Periodizität | jährlich wiederkehrende Veranstaltung |
Lehrsprache | Englisch |
Lehrveranstaltungen
Nummer | Titel | Umfang | Dozierende | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0116-00 G | High Performance Computing for Science and Engineering (HPCSE) II Lecture: 13-15h Exercises: 10-12h The exercises begin in the second week of the semester. | 4 Std. |
| P. Koumoutsakos, S. M. Martin | ||||||||||||
151-0116-00 P | High Performance Computing for Science and Engineering (HPCSE) for CSE | 2 Std. |
| P. Koumoutsakos, S. M. Martin |
Katalogdaten
Kurzbeschreibung | This course focuses on programming methods and tools for parallel computing on multi and many-core architectures. Emphasis will be placed on practical and computational aspects of Bayesian Uncertainty Quantification and Machine Learning including the implementation of these algorithms on HPC architectures. |
Lernziel | The course will teach - programming models and tools for multi and many-core architectures - fundamental concepts of Uncertainty Quantification and Propagation (UQ+P) for computational models of systems in Engineering and Life Sciences. - fundamentals of Deep Learning |
Inhalt | High Performance Computing: - Advanced topics in shared-memory programming - Advanced topics in MPI - GPU architectures and CUDA programming Uncertainty Quantification: - Uncertainty quantification under parametric and non-parametric modeling uncertainty - Bayesian inference with model class assessment - Markov Chain Monte Carlo simulation Machine Learning - Deep Neural Networks and Stochastic Gradient Descent - Deep Neural Networks for Data Compression (Autoencoders) - Recurrent Neural Networks |
Skript | https://www.cse-lab.ethz.ch/teaching/hpcse-ii_fs20/ Class notes, handouts |
Literatur | - Class notes - Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein - CUDA by example, J. Sanders and E. Kandrot - Data Analysis: A Bayesian Tutorial, D. Sivia and J. Skilling - An introduction to Bayesian Analysis - Theory and Methods, J. Gosh, N. Delampady and S. Tapas - Bayesian Data Analysis, A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari and D. Rubin - Machine Learning: A Bayesian and Optimization Perspective, S. Theodorides |
Voraussetzungen / Besonderes | Attendance of HPCSE I |
Leistungskontrolle
Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird) | |
![]() | |
Für Reglement (Prüfungsblock) | Bachelor-Studiengang Rechnergestützte Wissenschaften 2012; Ausgabe 13.12.2016 (Prüfungsblock Kernfächer) Bachelor-Studiengang Rechnergestützte Wissenschaften 2016; Ausgabe 27.03.2018 (Prüfungsblock Kernfächer) |
ECTS Kreditpunkte | 11 KP |
Prüfende | P. Koumoutsakos |
Form | Sessionsprüfung |
Prüfungssprache | Englisch |
Repetition | Die Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich. |
Prüfungsmodus | schriftlich 180 Minuten |
Zusatzinformation zum Prüfungsmodus | The class has one compulsory continuous performance assessment (mandatory project, comprising of 6 biweekly assignments). The final grade will be determined as a weighted average of the grades: 70% session examination and 30% project. The project will be divided into 6 homework assignments, each counting to 5% of the course grade, delivered and graded every 2 weeks. All assignments must be delivered on the due date. Late assignments will be awarded a grade of 1. The assignments rely on each other so it would be more difficult to do only few than all of them. The assignments are envisioned as critical elements of the class and as assistance to the successful completion of the exam. The exam will contain a written part and exercises on the computer and it will contain material that refers directly to the assignments in the project. |
Hilfsmittel schriftlich | You are allowed to bring a HANDWRITTEN summary of 7 A4 sheets, written on the front and back pages (14 pages total). Photocopies are not allowed. |
Online-Prüfung | Die Prüfung kann am Computer stattfinden. |
![]() | |
ECTS Kreditpunkte | 7 KP |
Prüfende | P. Koumoutsakos |
Form | Sessionsprüfung |
Prüfungssprache | Englisch |
Repetition | Die Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich. |
Prüfungsmodus | schriftlich 180 Minuten |
Zusatzinformation zum Prüfungsmodus | Computer based examination involving theoretical questions and coding problems. Parts of the lecture documents and other materials will be made available online during the examination (for both HPCSE I and HPCSE II). |
Hilfsmittel schriftlich | You are allowed to bring a HANDWRITTEN summary of 7 A4 sheets, written on the front and back pages (14 pages total). Photocopies are not allowed. |
Online-Prüfung | Die Prüfung kann am Computer stattfinden. |
Falls die Lerneinheit innerhalb eines Prüfungsblockes geprüft wird, werden die Kreditpunkte für den gesamten bestandenen Block erteilt. Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan. |
Lernmaterialien
Hauptlink | Course web page |
Es werden nur die öffentlichen Lernmaterialien aufgeführt. |
Gruppen
Keine Informationen zu Gruppen vorhanden. |
Einschränkungen
Keine zusätzlichen Belegungseinschränkungen vorhanden. |
Angeboten in
Studiengang | Bereich | Typ | |
---|---|---|---|
Rechnergestützte Wissenschaften Bachelor | Modul A | W | ![]() |
Rechnergestützte Wissenschaften Bachelor | Kernfächer | O | ![]() |