401-3225-00L  Introduction to Lie Groups

SemesterAutumn Semester 2019
LecturersP. D. Nelson
Periodicityyearly recurring course
Language of instructionEnglish


AbstractTopological groups and Haar measure. Definition of Lie groups, examples of local fields and examples of discrete subgroups; basic properties; Lie subgroups. Lie algebras and relation with Lie groups: exponential map, adjoint representation. Semisimplicity, nilpotency, solvability, compactness: Killing form, Lie's and Engel's theorems. Definition of algebraic groups and relation with Lie groups.
Learning objectiveThe goal is to have a broad though foundational knowledge of the theory of Lie groups and their associated Lie algebras with an emphasis on the algebraic and topological aspects of it.
LiteratureA. Knapp: "Lie groups beyond an Introduction" (Birkhaeuser)
A. Sagle & R. Walde: "Introduction to Lie groups and Lie algebras" (Academic Press, '73)
F. Warner: "Foundations of differentiable manifolds and Lie groups" (Springer)
H. Samelson: "Notes on Lie algebras" (Springer, '90)
S. Helgason: "Differential geometry, Lie groups and symmetric spaces" (Academic Press, '78)
A. Knapp: "Lie groups, Lie algebras and cohomology" (Princeton University Press)
Prerequisites / NoticeTopology and basic notions of measure theory. A basic understanding of the concepts of manifold, tangent space and vector field is useful, but could also be achieved throughout the semester.

Course webpage: https://metaphor.ethz.ch/x/2018/hs/401-3225-00L/