The deadline for deregistering expires at the end of the fourth week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
In this seminar, recent papers of the pattern recognition and machine learning literature are presented and discussed. Possible topics cover statistical models in computer vision, graphical models and machine learning.
Lernziel
The seminar "Advanced Topics in Machine Learning" familiarizes students with recent developments in pattern recognition and machine learning. Original articles have to be presented and critically reviewed. The students will learn how to structure a scientific presentation in English which covers the key ideas of a scientific paper. An important goal of the seminar presentation is to summarize the essential ideas of the paper in sufficient depth while omitting details which are not essential for the understanding of the work. The presentation style will play an important role and should reach the level of professional scientific presentations.
Inhalt
The seminar will cover a number of recent papers which have emerged as important contributions to the pattern recognition and machine learning literature. The topics will vary from year to year but they are centered on methodological issues in machine learning like new learning algorithms, ensemble methods or new statistical models for machine learning applications. Frequently, papers are selected from computer vision or bioinformatics - two fields, which relies more and more on machine learning methodology and statistical models.
Literatur
The papers will be presented in the first session of the seminar.
Leistungskontrolle
Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Repetition nur nach erneuter Belegung der Lerneinheit möglich.
Zusatzinformation zum Prüfungsmodus
The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.
Gruppen
Keine Informationen zu Gruppen vorhanden.
Einschränkungen
Allgemein
: Für Fachstudierende und Hörer/-innen ist eine Spezialbewilligung der Dozierenden notwendig
Plätze
Maximal 40
Vorrang
Die Belegung der Lerneinheit ist nur durch die primäre Zielgruppe möglich
Primäre Zielgruppe
Robotics, Systems and Control MSc (159000)
Data Science MSc (261000)
Informatik MSc (263000)
CAS ETH in Informatik (269000)
Informatik (Mobilität) (274000)
Statistik MSc (436000)