401-3627-00L  High-Dimensional Statistics

SemesterHerbstsemester 2019
DozierendeP. L. Bühlmann
Periodizität2-jährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
401-3627-00 VHigh-Dimensional Statistics2 Std.
Do08:15-10:00HG D 7.1 »
P. L. Bühlmann

Katalogdaten

Kurzbeschreibung"High-Dimensional Statistics" deals with modern methods and theory for statistical inference when the number of unknown parameters is of much larger order than sample size. Statistical estimation and algorithms for complex models and aspects of multiple testing will be discussed.
LernzielKnowledge of methods and basic theory for high-dimensional statistical inference
InhaltLasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and l1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling
LiteraturPeter Bühlmann and Sara van de Geer (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Verlag.
ISBN 978-3-642-20191-2.
Voraussetzungen / BesonderesKnowledge of basic concepts in probability theory, and intermediate knowledge of statistics (e.g. a course in linear models or computational statistics).

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte4 KP
PrüfendeP. L. Bühlmann
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusschriftlich 60 Minuten
Zusatzinformation zum PrüfungsmodusStudents must take the exam in Winter 2020 or in Summer 2020. Be aware that no exam will be offered afterwards until the course will be read again.
Hilfsmittel schriftlich2 pages handwritten notes
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Data Science MasterWählbare KernfächerWInformation
Doktorat Departement MathematikGraduate School / GraduiertenkollegWInformation
Mathematik BachelorAuswahl: Wahrscheinlichkeitstheorie, StatistikWInformation
Mathematik MasterAuswahl: Wahrscheinlichkeitstheorie, StatistikWInformation
Rechnergestützte Wissenschaften BachelorWahlfächerWInformation
Rechnergestützte Wissenschaften MasterWahlfächerWInformation
Statistik MasterStatistische und mathematische FächerWInformation