This course introduces core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet.
Lernziel
How can we build systems that perform well in uncertain environments and unforeseen situations? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet. The course is designed for upper-level undergraduate and graduate students.
Inhalt
Topics covered: - Search (BFS, DFS, A*), constraint satisfaction and optimization - Tutorial in logic (propositional, first-order) - Probability - Bayesian Networks (models, exact and approximative inference, learning) - Temporal models (Hidden Markov Models, Dynamic Bayesian Networks) - Probabilistic palnning (MDPs, POMPDPs) - Reinforcement learning - Combining logic and probability
Voraussetzungen / Besonderes
Solid basic knowledge in statistics, algorithms and programming
Leistungskontrolle
Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Die Leistungskontrolle wird nur in der Session nach der Lerneinheit angeboten. Die Repetition ist nur nach erneuter Belegung möglich.
Prüfungsmodus
schriftlich 120 Minuten
Zusatzinformation zum Prüfungsmodus
Die Prüfung kann am Computer stattfinden / The exam might take place at a computer.
Hilfsmittel schriftlich
Two A4-pages (i.e. one A4-sheet of paper), either handwritten or 11 point minimum font size. A simple calculator will be provided on the computers where you will be taking the exam.
Digitale Prüfung
Die Prüfung findet auf Geräten statt, die von der ETH Zürich zur Verfügung gestellt werden.
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.