263-5210-00L  Probabilistic Artificial Intelligence

SemesterHerbstsemester 2019
DozierendeA. Krause
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
263-5210-00 VProbabilistic Artificial Intelligence
Vorlesung im HG E 7 mit Videoübertragung im HG E 3.
2 Std.
Fr10:15-12:00HG E 3 »
10:15-12:00HG E 7 »
A. Krause
263-5210-00 UProbabilistic Artificial Intelligence1 Std.
Fr13:15-14:00CHN C 14 »
14:15-15:00CHN C 14 »
15:15-16:00CHN C 14 »
A. Krause
263-5210-00 AProbabilistic Artificial Intelligence1 Std.A. Krause

Katalogdaten

KurzbeschreibungThis course introduces core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet.
LernzielHow can we build systems that perform well in uncertain environments and unforeseen situations? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet. The course is designed for upper-level undergraduate and graduate students.
InhaltTopics covered:
- Search (BFS, DFS, A*), constraint satisfaction and optimization
- Tutorial in logic (propositional, first-order)
- Probability
- Bayesian Networks (models, exact and approximative inference, learning) - Temporal models (Hidden Markov Models, Dynamic Bayesian Networks)
- Probabilistic palnning (MDPs, POMPDPs)
- Reinforcement learning
- Combining logic and probability
Voraussetzungen / BesonderesSolid basic knowledge in statistics, algorithms and programming

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte5 KP
PrüfendeA. Krause
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird nur in der Session nach der Lerneinheit angeboten. Die Repetition ist nur nach erneuter Belegung möglich.
Prüfungsmodusschriftlich 120 Minuten
Zusatzinformation zum PrüfungsmodusDie Prüfung kann am Computer stattfinden / The exam might take place at a computer.
Hilfsmittel schriftlichTwo A4-pages (i.e. one A4-sheet of paper), either handwritten or 11 point minimum font size. A simple calculator will be provided on the computers where you will be taking the exam.
Digitale PrüfungDie Prüfung findet auf Geräten statt, die von der ETH Zürich zur Verfügung gestellt werden.
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

 
HauptlinkInformation
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

PlätzeMaximal 700
WartelisteBis 30.09.2019

Angeboten in

StudiengangBereichTyp
CAS in InformatikFokusfächer und WahlfächerWInformation
Computational Biology and Bioinformatics MasterTheorieWInformation
Cyber Security MasterWahlfächerWInformation
Cyber Security MasterWahlfächerWInformation
DAS in Data ScienceMachine Learning and Artificial IntelligenceWInformation
Data Science MasterWählbare KernfächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Informatik MasterWahlfächer der Vertiefung in Information SystemsWInformation
Informatik MasterWahlfächer der Vertiefung General StudiesWInformation
Informatik MasterWahlfächer der Vertiefung in Visual ComputingWInformation
Maschineningenieurwissenschaften MasterRobotics, Systems and ControlWInformation
Rechnergestützte Wissenschaften BachelorRobotikWInformation
Rechnergestützte Wissenschaften MasterRobotikWInformation
Robotics, Systems and Control MasterKernfächerWInformation