Mathematical treatment of diverse optimization techniques.
Lernziel
The goal of this course is to get a thorough understanding of various classical mathematical optimization techniques with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on this structural understanding.
Inhalt
Key topics include: - Linear programming and polyhedra; - Flows and cuts; - Combinatorial optimization problems and techniques; - Equivalence between optimization and separation; - Brief introduction to Integer Programming.
Literatur
- Bernhard Korte, Jens Vygen: Combinatorial Optimization. 6th edition, Springer, 2018. - Alexander Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003. This work has 3 volumes. - Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993. - Alexander Schrijver: Theory of Linear and Integer Programming. John Wiley, 1986.
Voraussetzungen / Besonderes
Solid background in linear algebra.
Leistungskontrolle
Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Die Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodus
schriftlich 180 Minuten
Zusatzinformation zum Prüfungsmodus
Credits can only be recognised for either "Mathematical Optimization", offered in the Autumn Semester 2019, or for the previously offered course "Combinatorial Optimization" (401-4904-00L), but not both.
Hilfsmittel schriftlich
None
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.