151-0530-00L  Nonlinear Dynamics and Chaos II

SemesterSpring Semester 2019
LecturersG. Haller
Periodicityyearly recurring course
CourseDoes not take place this semester.
Language of instructionEnglish


AbstractThe internal structure of chaos; Hamiltonian dynamical systems; Normally hyperbolic invariant manifolds; Geometric singular perturbation theory; Finite-time dynamical systems
Learning objectiveThe course introduces the student to advanced, comtemporary concepts of nonlinear dynamical systems analysis.
ContentI. The internal structure of chaos: symbolic dynamics, Bernoulli shift map, sub-shifts of finite type; chaos is numerical iterations.

II.Hamiltonian dynamical systems: conservation and recurrence, stability of fixed points, integrable systems, invariant tori, Liouville-Arnold-Jost Theorem, KAM theory.

III. Normally hyperbolic invariant manifolds: Crash course on differentiable manifolds, existence, persistence, and smoothness, applications.
IV. Geometric singular perturbation theory: slow manifolds and their stability, physical examples. V. Finite-time dynamical system; detecting Invariant manifolds and coherent structures in finite-time flows
Lecture notesStudents have to prepare their own lecture notes
LiteratureBooks will be recommended in class
Prerequisites / NoticeNonlinear Dynamics I (151-0532-00) or equivalent