401-0292-00L Mathematik II
Semester | Frühjahrssemester 2019 |
Dozierende | E. W. Farkas |
Periodizität | jährlich wiederkehrende Veranstaltung |
Lehrsprache | Deutsch |
Kurzbeschreibung | Mathematik I/II ist eine Einführung in die ein- und mehrdimensionale Analysis und die Lineare Algebra unter besonderer Betonung von Anwendungen in den Naturwissenschaften. |
Lernziel | Die Studierenden + verstehen Mathematik als Sprache zur Modellbildung und als Werkzeug zur Lösung angewandter Probleme in den Naturwissenschaften. + können Entwicklungsmodelle analysieren, Lösungen qualitativ beschreiben oder allenfalls explizit berechnen: diskret/kontinuierlich in Zeit, Ebene und Raum. + können Beispiele und konkrete arithmetische und geometrische Situationen der Anwendungen interpretieren und bearbeiten, auch mit Hilfe von Computeralgebrasystemen. |
Inhalt | ## Komplexe Zahlen ## - Kartesische und Polar-Darstellung - Rechnen mit komplexen Zahlen - Lösungen algebraischer Gleichungen ## Lineare Algebra - Fortsetzung ## - Komplexe Vektoren und Matrizen - Weitere Arithmetische Aspekte - LGS und Gauss-Verfahren ## Lineare DGL 2. Ordnung und Systeme 1. Ordnung ## - Lösen mit Eigenwerten/-vektoren. - Qualitative Lösungsverhalten - Ebene und Räumliche (Lösungs-)Kurven ## Integral- und Differentialrechnung (II) ## - Hauptsatz der Differential/Integralrechnung - Uneigentliche Integrale - Anwendungen - Gebiets- und Volumenintegral - - - - - - - - - - - - - - - - - - - - - - Partielle Funktionen und Ableitungen - Extrema - Tangentialebene - Verallgemeinerte Kettenregel ## Vektoranalysis ## - Potentialtheorie - Formel von Green - Rotation und Divergenz - Oberflächenintegral, Fluss - Integralsätze von Gauss und Stokes. ## Potenzreihen ## - Reihen - Taylor-Reihe - Potenzreihen und Anwendungen |
Skript | In Ergänzung zu den Vorlesungskapiteln der Lehrveranstaltungen fassen wir wichtige Sachverhalte, Formeln und weitere Ausführungen jeweils in einem Vademecum zusammen. Dabei gilt: * Die Skripte ersetzen nicht die Vorlesung und/oder die Übungen! * Ohne den Besuch der Lehrveranstaltungen verlieren die Ausführungen ihren Mehrwert. * Details entwickeln wir in den Vorlesungen und den Übungen, um die hier bestehenden Lücken zu schliessen. * Prüfungsrelevant ist, was wir in der Vorlesung und in den Übungen behandeln. |
Literatur | Siehe auch Lernmaterial > Literatur **Th. Wihler** Mathematik für Naturwissenschaften, 2 Bände: Einführung in die Analysis, Einführung in die Lineare Algebra; Haupt-Verlag Bern, UTB. **H. H. Storrer** Einführung in die mathematische Behandlung der Naturwissenschaften I; Birkhäuser. Via ETHZ-Bibliothek: <https://link.springer.com/book/10.1007/978-3-0348-8598-0> **Ch. Blatter** Lineare Algebra; VDF auch als [pdf]<https://people.math.ethz.ch/~blatter/linalg.pdf> |
Voraussetzungen / Besonderes | ## Voraussetzungen ## Mathematik I <Link> ## Übungen und Prüfungen ## + Die Übungsaufgaben (inkl. Multiple-Choice) sind ein wichtiger Bestandteil der Lehrveranstaltung. + Es wird erwartet, dass Sie mindestens 75 % der wöchentlichen Serien bearbeiten und zur Korrektur einreichen. + Der Prüfungsstoff ist eine Auswahl von Themen aus Vorlesung und Übungen. Für eine erfolgreiche Prüfung ist die konzentrierte Bearbeitung der Aufgaben unerlässlich. ## Einschreibung in die Übungen ## Die Einschreibung in die Übungsgruppen erfolgt online. ## Zugang Übungsserien ## Erfolgt auch online. |