636-0019-00L Data Mining II
Semester | Frühjahrssemester 2019 |
Dozierende | K. M. Borgwardt |
Periodizität | jährlich wiederkehrende Veranstaltung |
Lehrsprache | Englisch |
Kommentar | Prerequisites: Basic understanding of mathematics, as taught in basic mathematics courses at the Bachelor`s level. Ideally, students will have attended Data Mining I before taking this class. |
Lehrveranstaltungen
Nummer | Titel | Umfang | Dozierende | |||||||
---|---|---|---|---|---|---|---|---|---|---|
636-0019-00 G | Data Mining II The lecture will be held each Wednesday either in Zurich or Basel and will be transmitted via videoconference to the second location. Lecture in Basel/Zürich: Wednesday 14-16h, Tutorial 16-17h (BSB E4 Room "Manser" / HG D16.2) | 3 Std. |
| K. M. Borgwardt | ||||||
636-0019-00 A | Data Mining II Project Work (compulsory continuous performance assessment), no fixed presence required. | 2 Std. | K. M. Borgwardt |
Katalogdaten
Kurzbeschreibung | Data Mining, the search for statistical dependencies in large databases, is of utmost important in modern society, in particular in biological and medical research. Building on the basic algorithms and concepts of data mining presented in the course "Data Mining I", this course presents advanced algorithms and concepts from data mining and the state-of-the-art in applications of data mining. |
Lernziel | The goal of this course is that the participants gain an advanced understanding of data mining problems and algorithms to solve these problems, in particular in biological and medical applications, and to enable them to conduct their own research projects in the domain of data mining. |
Inhalt | The goal of the field of data mining is to find patterns and statistical dependencies in large databases, to gain an understanding of the underlying system from which the data were obtained. In computational biology, data mining contributes to the analysis of vast experimental data generated by high-throughput technologies, and thereby enables the generation of new hypotheses. In this course, we will present advanced topics in data mining and its applications in computational biology. Tentative list of topics: 1. Dimensionality Reduction 2. Association Rule Mining 3. Text Mining 4. Graph Mining |
Skript | Course material will be provided in form of slides. |
Literatur | Will be provided during the course. |
Leistungskontrolle
Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird) | |
![]() | |
ECTS Kreditpunkte | 6 KP |
Prüfende | K. M. Borgwardt |
Form | Sessionsprüfung |
Prüfungssprache | Englisch |
Repetition | Die Leistungskontrolle wird nur in der Session nach der Lerneinheit angeboten. Die Repetition ist nur nach erneuter Belegung möglich. |
Prüfungsmodus | schriftlich 90 Minuten |
Zusatzinformation zum Prüfungsmodus | Final grade: 70% written examination, 30% project work Project work has to be re-done in case of repetition The course includes up to 6 compulsory continuous performance assessments in form of biweekly homework assignments, which constitute 30% of the final grade |
Hilfsmittel schriftlich | Keine |
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan. |
Lernmaterialien
Keine öffentlichen Lernmaterialien verfügbar. | |
Es werden nur die öffentlichen Lernmaterialien aufgeführt. |
Gruppen
Keine Informationen zu Gruppen vorhanden. |
Einschränkungen
Keine zusätzlichen Belegungseinschränkungen vorhanden. |
Angeboten in
Studiengang | Bereich | Typ | |
---|---|---|---|
Biotechnologie Master | Wahlfächer | W | ![]() |
Computational Biology and Bioinformatics Master | Data Science | W | ![]() |