402-0897-00L Introduction to String Theory
Semester | Autumn Semester 2018 |
Lecturers | B. Hoare |
Periodicity | non-recurring course |
Language of instruction | English |
Abstract | This course gives an introduction to string theory. The first half of the course will cover the bosonic string and its quantization in flat space, concluding with the introduction of D-branes and T-duality. The second half will cover various advanced topics selected from those listed below. |
Learning objective | The aim of this course is to motivate the subject of string theory, exploring the important role it has played in the development of modern theoretical and mathematical physics. The goal of the first half of the course is to give a pedagogical introduction to the bosonic string in flat space. Building on this foundation, the goal of the second half of the course is to give a flavour of various more advanced topics. |
Content | I. Introduction II. The relativistic point particle III. The classical closed string IV. Quantizing the closed string V. The open string and D-branes VI. T-duality in flat space Possible advanced topics include: VII. Conformal field theory VIII. The Polyakov path integral IX. String interactions X. Low energy effective actions XI. Superstring theory |
Literature | Lecture notes: String Theory - D. Tong http://www.damtp.cam.ac.uk/user/tong/string.html Lectures on String Theory - G. Arutyunov http://stringworld.ru/files/Arutyunov_G._Lectures_on_string_theory.pdf Books: Superstring Theory - M. Green, J. Schwarz and E. Witten (two volumes, CUP, 1988) Volume 1: Introduction Volume 2: Loop Amplitudes, Anomalies and Phenomenology String Theory - J. Polchinski (two volumes, CUP, 1998) Volume 1: An Introduction to the Bosonic String Volume 2: Superstring Theory and Beyond Errata: http://www.kitp.ucsb.edu/~joep/errata.html Basic Concepts of String Theory - R. Blumenhagen, D. Lüst and S. Theisen (Springer-Verlag, 2013) |