529-0432-00L  Physical Chemistry IV: Magnetic Resonance

SemesterAutumn Semester 2018
LecturersB. H. Meier, M. Ernst, G. Jeschke
Periodicityyearly recurring course
Language of instructionGerman


AbstractTheoretical foundations of magnetic resonance (NMR,EPR) and selected applications.
ObjectiveIntroduction to magnetic resonance in isotropic and anisotropic phase.
ContentThe course gives an introduction to magnetic resonance spectroscopy (NMR and EPR) in liquid, liquid crystalline and solid phase. It starts from a classical description in the framework of the Bloch equations. The implications of chemical exchange are studied and two-dimensional exchange spectroscopy is introduced. An introduction to Fourier spectroscopy in one and two dimensions is given and simple 'pulse trickery' is described. A quantum-mechanical description of magnetic resonance experiments is introduced and the spin Hamiltonian is derived. The chemical shift term as well as the scalar, dipolar and quadrupolar terms are discussed. The product-operator formalism is introduced and various experiments are described, e.g. polarization transfer. Applications in chemistry, biology, physics and medicine, e.g. determination of 3D molecular structure of dissolved molecules, determination of the structure of paramagnetic compounds and imaging (MRI) are presented.
Lecture noteshanded out in the lecture (in english)
Literaturesee Link