151-0966-00L  Introduction to Quantum Mechanics for Engineers

SemesterSpring Semester 2018
LecturersD. J. Norris
Periodicityyearly recurring course
Language of instructionEnglish


AbstractThis course provides fundamental knowledge in the principles of quantum mechanics and connects it to applications in engineering.
ObjectiveTo work effectively in many areas of modern engineering, such as renewable energy and nanotechnology, students must possess a basic understanding of quantum mechanics. The aim of this course is to provide this knowledge while making connections to applications of relevancy to engineers. After completing this course, students will understand the basic postulates of quantum mechanics and be able to apply mathematical methods for solving various problems including atoms, molecules, and solids. Additional examples from engineering disciplines will also be integrated.
ContentFundamentals of Quantum Mechanics
- Historical Perspective
- Schrödinger Equation
- Postulates of Quantum Mechanics
- Operators
- Harmonic Oscillator
- Hydrogen atom
- Multielectron Atoms
- Crystalline Systems
- Spectroscopy
- Approximation Methods
- Applications in Engineering
Lecture notesClass Notes and Handouts
LiteratureText: David J. Griffiths, Introduction to Quantum Mechanics, 2nd Edition, Pearson International Edition.
Prerequisites / NoticeAnalysis III, Mechanics III, Physics I, Linear Algebra II