636-0113-00L  Genome Engineering

SemesterSpring Semester 2018
LecturersR. Platt
Periodicityyearly recurring course
Language of instructionEnglish



Courses

NumberTitleHoursLecturers
636-0113-00 VGenome Engineering3 hrs
Thu14:15-17:00BSA E 46 »
R. Platt

Catalogue data

AbstractThis course is an introduction to genome engineering and an examination of recent advancements and future challenges. It covers the discovery and development of gene editing technologies and their applications in basic and applied research. The focus is on gaining an in-depth molecular and cellular understanding of the technologies and also insight into how these tools can be used and further deve
ObjectiveThe objective of this course is to learn how gene editing technologies function at the molecular and cellular level, and how they are leveraged to understand the role of genetic elements in biological processes. Students will be introduced to the history and motivation behind the discovery and development of transformative genome engineering technologies, and also gain insight into the ethical, safety, and regulatory facets shaping the field.
ContentThe course content is comprised of lectures, discussions of important literature in the field, and a project. Lectures in Genome Engineering will be technology-focused and incorporate: 1) historical context to motivate the need for developing the technology, 2) development of the technology from concept to robust tool, 3) methods to discover, characterize, and evaluate the technology, and 4) applications of the technology in basic and applied research. Discussions of important literature in the field will be conducted in class, one course meeting following a lecture covering the topic material and assignment of the reading. The project will be team-based and entail devising a solution to a critical need in the field.

Main topics:
--Discovery and development of genome editing technologies
--The prokaryotic adaptive immune system CRISPR-Cas
--Genome engineering methods for generating genetically engineered model systems
--Genotype-phenotype linkage via genetic screens
--Massively paralleled perturbation and phenotyping
--Gene editing tools as genetic recording devices
--Gene editing tools as diagnostics and therapeutics
--Ethics, safety, and regulatory facets of genome engineering
Lecture notesHandout during the course.
LiteraturePeer-reviewed scientific publications will be assigned to complement lecture content.

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits4 credits
ExaminersR. Platt
Typeend-of-semester examination
Language of examinationEnglish
RepetitionThe performance assessment is only offered at the end after the course unit. Repetition only possible after re-enrolling.
Additional information on mode of examinationOral exam 20 Minutes

Learning materials

No public learning materials available.
Only public learning materials are listed.

Groups

No information on groups available.

Restrictions

There are no additional restrictions for the registration.

Offered in

ProgrammeSectionType
Biotechnology MasterBiomelecular-OrientatedWInformation
Biotechnology MasterSystem-OrientatedWInformation