227-0967-00L  Computational Neuroimaging Clinic

SemesterAutumn Semester 2016
LecturersK. Stephan
Periodicityevery semester recurring course
Language of instructionEnglish
CommentPrerequisite: Successful completion of course "Methods & Models for fMRI Data Analysis" (227-0969-00L).


AbstractThis seminar teaches problem solving skills for computational neuroimaging, based on joint analyses of neuroimaging and behavioural data. It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g. mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data.
Learning objective1. Consolidation of theoretical knowledge (obtained in the following courses: 'Methods & models for fMRI data analysis', 'Translational Neuromodeling', 'Computational Psychiatry') in a practical setting.
2. Acquisition of practical problem solving strategies for computational modeling of neuroimaging data.
ContentThis seminar teaches problem solving skills for computational neuroimaging, based on joint analyses of neuroimaging and behavioural data. It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g. mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data.
Prerequisites / NoticeThe participants are expected to have successfully completed at least one of the following courses:
'Methods & models for fMRI data analysis',
'Translational Neuromodeling',
'Computational Psychiatry'