376-1103-00L  Frontiers in Nanotechnology

SemesterSpring Semester 2013
LecturersV. Vogel
Periodicityyearly recurring course
Language of instructionEnglish



Courses

NumberTitleHoursLecturers
376-1103-00 VFrontiers in Nanotechnology4 hrs
Mon09:45-11:30HPT B 71 »
Fri13:45-15:30HCI H 8.1 »
V. Vogel

Catalogue data

AbstractMany disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers.
ObjectiveBuilding upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.

The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently “sizzling” in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.

Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.
ContentStarting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.
Lecture notesAll the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits4 credits
ExaminersV. Vogel
Typeend-of-semester examination
Language of examinationEnglish
RepetitionA repetition date will be offered in the first two weeks of the semester immediately consecutive.

Learning materials

No public learning materials available.
Only public learning materials are listed.

Groups

No information on groups available.

Restrictions

There are no additional restrictions for the registration.

Offered in

ProgrammeSectionType
Biomedical Engineering MasterTrack Core CoursesWInformation
Biomedical Engineering MasterRecommended Elective CoursesWInformation
Biomedical Engineering MasterRecommended Elective CoursesWInformation
Materials Science MasterMolecular BioengineeringWInformation
Materials Science MasterNano-Science and -TechnologyWInformation
Materials Science MasterBiomaterials and Molecular BioengineeringWInformation
Micro- and Nanosystems MasterElective Core CoursesW+Information