401-4623-DRL  Time Series Analysis

SemesterAutumn Semester 2023
LecturersN. Meinshausen
Periodicitytwo-yearly recurring course
CourseDoes not take place this semester.
Language of instructionEnglish
CommentOnly for ZGSM (ETH D-MATH and UZH I-MATH) doctoral students. The latter need to register at myStudies and then send an email to info@zgsm.ch with their name, course number and student ID. Please see https://zgsm.math.uzh.ch/index.php?id=forum0


AbstractThe course offers an introduction into analyzing times series, that is observations which occur in time. The material will cover Stationary Models, ARMA processes, Spectral Analysis, Forecasting, Nonstationary Models, ARIMA Models and an introduction to GARCH models.
Learning objectiveThe goal of the course is to have a a good overview of the different types of time series and the approaches used in their statistical analysis.
ContentThis course treats modeling and analysis of time series, that is random variables which change in time. As opposed to the i.i.d. framework, the main feature exibited by time series is the dependence between successive observations.

The key topics which will be covered as:

Stationarity
Autocorrelation
Trend estimation
Elimination of seasonality
Spectral analysis, spectral densities
Forecasting
ARMA, ARIMA, Introduction into GARCH models
LiteratureThe main reference for this course is the book "Introduction to Time Series and Forecasting", by P. J. Brockwell and R. A. Davis
Prerequisites / NoticeBasic knowledge in probability and statistics