In regression, the dependency of a random response variable on other variables is examined. We consider the theory of linear regression with one or more covariates, high-dimensional linear models, nonlinear models and generalized linear models, robust methods, model choice and nonparametric models. Several numerical examples will illustrate the theory.
Learning objective
Introduction into theory and practice of a broad and popular area of statistics, from a modern viewpoint.
Content
In der Regression wird die Abhängigkeit einer beobachteten quantitativen Grösse von einer oder mehreren anderen (unter Berücksichtigung zufälliger Fehler) untersucht. Themen der Vorlesung sind: Einfache und multiple Regression, Theorie allgemeiner linearer Modelle, Hoch-dimensionale Modelle, Ausblick auf nichtlineare Modelle. Querverbindungen zur Varianzanalyse, Modellsuche, Residuenanalyse; Einblicke in Robuste Regression. Durchrechnung und Diskussion von Anwendungsbeispielen.
Prerequisites / Notice
This is the course unit with former course title "Regression". Credits cannot be recognised for both courses 401-3622-00L Statistical Modelling and 401-0649-00L Applied Statistical Regression in the Mathematics Bachelor and Master programmes (to be precise: one course in the Bachelor and the other course in the Master is also forbidden).
Performance assessment
Performance assessment information (valid until the course unit is held again)
The performance assessment is offered every session. Repetition possible without re-enrolling for the course unit.
Mode of examination
written 120 minutes
Additional information on mode of examination
Credits cannot be recognised for both courses 401-3622-00L Statistical Modelling and 401-0649-00L Applied Statistical Regression in the Mathematics Bachelor and Master programmes (to be precise: one course in the Bachelor and the other course in the Master is also forbidden).
Written aids
One sheet of paper (A4, front and back) with a machine- or handwritten summary
Digital exam
The exam takes place on devices provided by ETH Zurich.
Distance examination
It is not possible to take a distance examination.
This information can be updated until the beginning of the semester; information on the examination timetable is binding.
Learning materials
No public learning materials available.
Only public learning materials are listed.
Groups
No information on groups available.
Restrictions
There are no additional restrictions for the registration.