Only for Electrical Engineering and Information Technology BSc.
The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
Abstract
The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
Learning objective
Invented in the 1980s in Zurich and awarded with the Kavli prize in 2016, the atomic force microscope (AFM) has enabled us to visualize surfaces at the single atom level, and to measure single molecule and cell-cell interactions, deepening our understanding of material science and biology. This is achieved by controlling micromechanical piezo actuators with nanometer precision and processing noisy signals in order to achieve meaningful data.
In order to introduce you to the capabilities of modern AFMs in biomedical sensing, you will build your own setups in groups of two. You will be introduced to an AFM’s functionality, control, and signal read-out using LabView. A signal of an oscillating tuning-fork will be used as feedback for the self-built AFM. In order to better understand the working principle of a tuning fork, you will also build your own frequency sweeper and analyze it with self-built low-pass filters.
After you have implemented your own setup, you will have the chance to characterize different biomedical samples on state-of-the-art setups. This data will then be analyzed using Python. The focus of this P&S seminar is to enable you to transfer your theoretical knowledge into practice and at the same time get to know how electrical engineering can be used in biomedical research.
The course requires active participation during the practical sessions, a 10-15 min presentation and a short written report on the acquired results. The course will be given in English.