151-0802-00L Automation Technology
Semester | Spring Semester 2021 |
Lecturers | H. Wild, K. Wegener |
Periodicity | yearly recurring course |
Language of instruction | English |
Abstract | The automation of production lines will be dealt as interdisciplinary topic. The course contains: - elementary elements of automatized systems - Chain of action: sensors, signalisation, control and closed loop control, power electronics, actors - Conception, description, computation, layout, design and simulation - Availability and reliability - Modern concepts |
Learning objective | The students shall acquire knowledge for projection and realization of highly automatized production systems. They will be trained to understand, overview and supervise the whole value chain from the definition of task the specification tender, conception and projection, the detailed design and startup. They shall know and be able to evaluate the solution possibilities, and the concepts in research and development. |
Content | Highly developed industrialized nations are necessarily bound to automatization of manufacturing processes for their competitiveness. Conception, realization, startup and run in of automatized production lines, "to make them alive", is one of the most exciting businesses in engineering. For the layout of automatized systems mechatronic design is of greatest importance to achieve optimal and overall supreme solutions. The course focuses on the interdisciplinary solution space, spanned by mechanical engineering, process technology, electronics and electrical engineering, information technology and more and more optics. subsystems , the information and optical subsystems. The complete processing chain, from sensing to action, sensors, signalization, control and closed loop control, power electronics and actors is discussed. Basic elements, sensors and actors, transmitting from mechanics to electronics and vice versa, as well as control systems and interfaces and bus systems are presented. In production technology these are applied in the different automation devices and then condensed to full production lines. Different concepts for automation, layout planning, description and simulation and the interface to and safety of humans are topics. The economic boundary conditions are taken into account and lead to concepts for availability and reliability of complex systems and to the discussion of today's research concepts for fault tolerancing systems, to autodiagnosis and self repair, cognitive systems and agent systems. In theoretical and experimental exercises the students can gain experience, that qualify them for the conception, computation and startup of automatized systems. |
Lecture notes | Manuscripts are distributed per chapter |