401-2554-00L Topology
Semester | Spring Semester 2021 |
Lecturers | P. Feller |
Periodicity | yearly recurring course |
Language of instruction | German |
Abstract | Topics covered include: topological spaces, continuity, connectedness, compactness, product spaces, separation axioms, quotient spaces, homotopy, fundamental group, covering spaces. |
Learning objective | An introduction to topology -- the domain of mathematics that studies how to define the notion of continuity on a mathematical structure, and how to use it to study and classify these structures. |
Literature | Hauptreferenz: - Klaus Jänich: Topologie (Springer). https://link.springer.com/book/10.1007/978-3-662-10575-7 Weitere Referenzen: - Boto von Querenburg: Mengentheoretische Topologie (Springer). http://link.springer.com/book/10.1007/978-3-642-56860-2 - http://pi.math.cornell.edu/~hatcher/Top/TopNotes.pdf (für den ersten Teil der Vorlesung über die allgemeine (/mengentheoretische) Topologie) - http://pi.math.cornell.edu/~hatcher/AT/ATch1.pdf (für den zweiten Teil der Vorlesung über die Anfänge der algebraischen Topologie (Fundamentalgrupppe, Überlagerungen)). - James Munkres: Topology (Pearson Modern Classics for Advanced Mathematics Series). - Lynn Arthur Steen, J. Arthur Seebach Jr.: Counterexamples in Topology (Springer). - Edwin Spanier: Algebraic Topology (Springer). |