This course teaches methods and models for fMRI data analysis, covering all aspects of statistical parametric mapping (SPM), incl. preprocessing, the general linear model, statistical inference, multiple comparison corrections, event-related designs, and Dynamic Causal Modelling (DCM), a Bayesian framework for identification of nonlinear neuronal systems from neurophysiological data.
Lernziel
To obtain in-depth knowledge of the theoretical foundations of SPM and DCM and of their practical application to empirical fMRI data.
Inhalt
This course teaches state-of-the-art methods and models for fMRI data analysis in lectures and exercises. It covers all aspects of statistical parametric mapping (SPM), incl. preprocessing, the general linear model, frequentist and Bayesian inference, multiple comparison corrections, and event-related designs, and Dynamic Causal Modelling (DCM), a Bayesian framework for identification of nonlinear neuronal systems from neurophysiological data. A particular emphasis of the course will be on methodological questions arising in the context of clinical studies in psychiatry and neurology. Practical exercises serve to consolidate the skills taught in lectures.