101-0250-00L  Solving Partial Differential Equations in parallel on GPUs

SemesterHerbstsemester 2021
DozierendeL. Räss, S. Omlin, M. Werder
Periodizitätjährlich wiederkehrende Veranstaltung


101-0250-00 GSolving Partial Differential Equations in parallel on GPUs3 Std.
Di12:45-15:30HCI E 8 »
L. Räss, S. Omlin, M. Werder


KurzbeschreibungThis course aims to cover state-of-the-art methods in modern parallel Graphical Processing Unit (GPU) computing, supercomputing and code development with applications to natural sciences and engineering.
LernzielWhen quantitative assessment of physical processes governing natural and engineered systems relies on numerically solving differential equations, fast and accurate solutions require performant algorithms leveraging parallel hardware. The goal of this course is to offer a practical approach to solve systems of differential equations in parallel on GPUs using the Julia language. Julia combines high-level language conciseness to low-level language performance which enables efficient code development.

The course will be taught in a hands-on fashion, putting emphasis on you writing code and completing exercises; lecturing will be kept at a minimum. In a final project you will solve a solid mechanics or fluid dynamics problem of your interest, such as the shallow water equation, the shallow ice equation, acoustic wave propagation, nonlinear diffusion, viscous flow, elastic deformation, viscous or elastic poromechanics, frictional heating, and more. Your Julia GPU application will be hosted on a git-platform and implement modern software development practices.
InhaltPart 1 - Discovering a modern parallel computing ecosystem
- Learn the basics of the Julia language;
- Learn about the diffusion process and how to solve it;
- Understand the practical challenges of parallel and distributed computing: (multi-)GPUs, multi-core CPUs;
- Learn about software development tools: git, version control, continuous integration (CI), unit tests.

Part 2 - Developing your own parallel algorithms
- Implement wave propagation (or more advanced physics);
- Apply spatial and temporal discretisation (finite-differences, various time-stepper);
- Implement efficient iterative algorithms;
- Implement shared (on CPU and GPU) and, if time allows, distributed memory parallelisation (multi-GPUs/CPUs);
- Learn about main simulation performance limiters.

Part 3 - Final project
- Apply your new skills in a final project;
- Implement advanced physical processes (solid and fluid dynamic - elastic and viscous solutions).
SkriptDigital lecture notes, interactive Julia notebooks, online material.
LiteraturLinks to relevant literature will be provided during classes.
Voraussetzungen / BesonderesCompleted BSc studies. Interest in and basic knowledge of numerics, applied mathematics, and physics/engineering sciences. Basic programming skills (in e.g. Matlab, Python, Julia); advanced programming skills are a plus.


Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte4 KP
PrüfendeM. Werder, S. Omlin, L. Räss
Formbenotete Semesterleistung
RepetitionRepetition nur nach erneuter Belegung der Lerneinheit möglich.
Zusatzinformation zum PrüfungsmodusThe graded semester performance consists of: (1) 7 (out of 9) weekly assignments (40% of the final grade) during the course's Parts 1&2; (2) a final project during Part 3 (60% of the final grade). (1) Weekly coding exercises can be done alone or in groups of two. (2) Final projects are to be worked on in groups of two and submission includes codes in a git repository and an automatic generated documentation.


Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.


Keine Informationen zu Gruppen vorhanden.


PlätzeMaximal 20
WartelisteBis 14.09.2021

Angeboten in

Bauingenieurwissenschaften MasterVertiefung in Wasserbau und WasserwirtschaftWInformation
Bauingenieurwissenschaften MasterFächer DigitalWInformation
Bauingenieurwissenschaften MasterProjektbasierte LehrveranstaltungenWInformation
Informatik Bachelor5. SemesterWInformation
Rechnergestützte Wissenschaften MasterWahlfächerWInformation