851-0739-01L  Sequencing Legal DNA: NLP for Law and Political Economy

SemesterFrühjahrssemester 2020
DozierendeE. Ash
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch
KommentarParticularly suitable for students of D-INFK, D-ITET, D-MTEC



Lehrveranstaltungen

NummerTitelUmfangDozierende
851-0739-01 VSequencing Legal DNA: NLP for Law and Political Economy2 Std.
Mo13:15-15:00LFW C 5 »
E. Ash

Katalogdaten

KurzbeschreibungThis course explores the application of natural language processing techniques to texts in law, politics, and the news media. Students will put these tools to work in a course project.
LernzielLaw is embedded in language. An essential task for a judge, therefore, is reading legal texts to interpret case facts and apply legal rules. Can an artificial intelligence learn to do these tasks? The recent and ongoing breakthroughs in natural language processing (NLP) hint at this possibility.

Meanwhile, a vast and growing corpus of legal documents are being digitized and put online for use by the public. No single human could hope to read all of them, yet many of these documents remain untouched by NLP techniques. This course invites students to participate in these new explorations applying NLP to the law -- that is, sequencing legal DNA.
InhaltNLP technologies have the potential to assist judges in their decisions by making them more efficient and consistent. On the other hand, legal language choices -- as in legal choices more generally -- could be biased toward some groups, and automated systems could entrench those biases. We will explore, critique, and integrate the emerging set of tools for debiasing language models and think carefully about how notions of fairness should be applied in this domain.

More generally, we will explore the use of NLP for social science research, not just in the law but also in politics, the economy, and culture. In a semester paper, students (individually or in groups) will conceive and implement their own research project applying natural language tools to legal or political texts.
Voraussetzungen / BesonderesSome programming experience in Python is required, and some experience with NLP is highly recommended.

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte3 KP
PrüfendeE. Ash
Formbenotete Semesterleistung
PrüfungsspracheEnglisch
RepetitionRepetition nur nach erneuter Belegung der Lerneinheit möglich.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Data Science MasterInterdisziplinäre WahlfächerWInformation
Doktorat Departement Geistes-, Sozial- und StaatswissenschaftenLehrangebot Doktorat und PostdoktoratWInformation
GESS Wissenschaft im Kontext (Science in Perspective)RechtWInformation
GESS Wissenschaft im Kontext (Science in Perspective)D-INFKWInformation
GESS Wissenschaft im Kontext (Science in Perspective)D-ITETWInformation
GESS Wissenschaft im Kontext (Science in Perspective)D-MTECWInformation