401-4115-00L  Introduction to Geometric Measure Theory

SemesterHerbstsemester 2018
DozierendeU. Lang
Periodizitäteinmalige Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
401-4115-00 VIntroduction to Geometric Measure Theory3 Std.
Di09:15-10:00HG D 3.2 »
Do10:15-12:00HG F 26.5 »
U. Lang

Katalogdaten

KurzbeschreibungIntroduction to Geometric Measure Theory from a metric viewpoint. Contents: Lipschitz maps, differentiability, area and coarea formula, rectifiable sets, introduction to the (de Rham-Federer-Fleming) theory of currents, currents in metric spaces after Ambrosio-Kirchheim, normal currents, relation to BV functions, slicing, compactness theorem for integral currents and applications.
Lernziel
InhaltExtendability and differentiability of Lipschitz maps, metric differentiability, rectifiable sets, approximate tangent spaces, area and coarea formula, brief survey of the (de Rham-Federer-Fleming) theory of currents, currents in metric spaces after Ambrosio-Kirchheim, currents with finite mass and normal currents, relation to BV functions, rectifiable and integral currents, slicing, compactness theorem for integral currents and applications.
Literatur- Pertti Mattila, Geometry of Sets and Measures in Euclidean Spaces, 1995
- Herbert Federer, Geometric Measure Theory, 1969
- Leon Simon, Introduction to Geometric Measure Theory, 2014, Link
- Luigi Ambrosio and Bernd Kirchheim, Currents in metric spaces, Acta math. 185 (2000), 1-80
- Urs Lang, Local currents in metric spaces, J. Geom. Anal. 21 (2011), 683-742

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte6 KP
PrüfendeU. Lang
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusmündlich 20 Minuten
Zusatzinformation zum PrüfungsmodusPrüfungssprache: Deutsch oder Englisch / Language of examination: English or German
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Mathematik BachelorAuswahl: AnalysisWInformation
Mathematik MasterAuswahl: AnalysisWInformation