401-3055-64L  Algebraic Methods in Combinatorics

SemesterHerbstsemester 2017
DozierendeB. Sudakov
Periodizitäteinmalige Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
401-3055-64 VAlgebraic Methods in Combinatorics2 Std.
Mi10:15-12:00HG D 5.2 »
B. Sudakov
401-3055-64 UAlgebraic Methods in Combinatorics1 Std.
Mo15:15-16:00CAB G 11 »
B. Sudakov

Katalogdaten

KurzbeschreibungCombinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas.
Lernziel
InhaltCombinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. While in the past many of the basic combinatorial results were obtained mainly by ingenuity and detailed reasoning, the modern theory has grown out of this early stage and often relies on deep, well-developed tools.

One of the main general techniques that played a crucial role in the development of Combinatorics was the application of algebraic methods. The most fruitful such tool is the dimension argument. Roughly speaking, the method can be described as follows. In order to bound the cardinality of of a discrete structure A one maps its elements to vectors in a linear space, and shows that the set A is mapped to linearly independent vectors. It then follows that the cardinality of A is bounded by the dimension of the corresponding linear space. This simple idea is surprisingly powerful and has many famous applications.

This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

Basic dimension arguments, Spaces of polynomials and tensor product methods, Eigenvalues of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Warning theorem. Applications such as: Solution of Kakeya problem in finite fields, counterexample to Borsuk's conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

The course website can be found at
https://moodle-app2.let.ethz.ch/course/view.php?id=3770

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte6 KP
PrüfendeB. Sudakov
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird nur in der Session nach der Lerneinheit angeboten. Die Repetition ist nur nach erneuter Belegung möglich.
Prüfungsmodusschriftlich 180 Minuten
Hilfsmittel schriftlichIt is an open books exam.
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Doktorat Departement Informationstechnologie und ElektrotechnikLehrangebot Doktorat und PostdoktoratWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Informatik MasterWahlfächer der Vertiefung in Theoretical Computer ScienceWInformation
Informatik MasterWahlfächer der Vertiefung General StudiesWInformation
Mathematik BachelorAuswahl: Mathematische Optimierung, Diskrete MathematikWInformation
Mathematik MasterAuswahl: Mathematische Optimierung, Diskrete MathematikWInformation