401-3601-00L  Probability Theory

SemesterHerbstsemester 2016
DozierendeA.‑S. Sznitman
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch
KommentarDas Bachelor-Kernfach 401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory ist für Studierende mit einem ETH Zürich Bachelor-Abschluss in Mathematik für den Master-Studiengang Mathematik anrechenbar, falls sie im vorangegangenen Bachelor-Studium keine der drei Lerneinheiten 401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory, 401-3642-00L Brownian Motion and Stochastic Calculus bzw. 401-3602-00L Applied Stochastic Processes für den Bachelor-Abschluss anrechnen liessen.
Ausserdem ist höchstens eines der drei Fächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
im Master-Studiengang Mathematik anrechenbar.



Lehrveranstaltungen

NummerTitelUmfangDozierende
401-3601-00 VProbability Theory4 Std.
Di10:15-12:00HG G 3 »
Do10:15-12:00HG G 3 »
A.‑S. Sznitman
401-3601-00 UProbability Theory
Tue 13-14 or Tue 14-15 starting in the second week of the semester (Sep 27, 2016)
1 Std.
Di13:15-14:00HG F 26.5 »
13:15-14:00ML H 41.1 »
14:15-15:00HG F 26.5 »
14:15-15:00ML H 41.1 »
A.‑S. Sznitman

Katalogdaten

KurzbeschreibungBasics of probability theory and the theory of stochastic processes in discrete time
LernzielThis course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains.
InhaltThis course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains.
Skriptavailable, will be sold in the course
LiteraturR. Durrett, Probability: Theory and examples, Duxbury Press 1996
H. Bauer, Probability Theory, de Gruyter 1996
J. Jacod and P. Protter, Probability essentials, Springer 2004
A. Klenke, Wahrscheinlichkeitstheorie, Springer 2006
D. Williams, Probability with martingales, Cambridge University Press 1991

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte10 KP
PrüfendeA.-S. Sznitman
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusmündlich 30 Minuten
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Mathematik BachelorKernfächer aus Bereichen der angewandten Mathematik ...WInformation
Mathematik Master(auch Bachelor-)Kernfächer aus Bereichen der angewandten Mathematik ..WInformation
Physik BachelorAuswahl an Lehrveranstaltungen aus höheren SemesternWInformation
Physik MasterAuswahl: MathematikWInformation
Statistik MasterStatistische und mathematische FächerWInformation