401-3601-00L Probability Theory
Semester | Herbstsemester 2016 |
Dozierende | A.‑S. Sznitman |
Periodizität | jährlich wiederkehrende Veranstaltung |
Lehrsprache | Englisch |
Kommentar | Das Bachelor-Kernfach 401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory ist für Studierende mit einem ETH Zürich Bachelor-Abschluss in Mathematik für den Master-Studiengang Mathematik anrechenbar, falls sie im vorangegangenen Bachelor-Studium keine der drei Lerneinheiten 401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory, 401-3642-00L Brownian Motion and Stochastic Calculus bzw. 401-3602-00L Applied Stochastic Processes für den Bachelor-Abschluss anrechnen liessen. Ausserdem ist höchstens eines der drei Fächer 401-3461-00L Funktionalanalysis I / Functional Analysis I 401-3531-00L Differentialgeometrie I / Differential Geometry I 401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory im Master-Studiengang Mathematik anrechenbar. |
Lehrveranstaltungen
Nummer | Titel | Umfang | Dozierende | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-3601-00 V | Probability Theory | 4 Std. |
| A.‑S. Sznitman | ||||||||||||
401-3601-00 U | Probability Theory Tue 13-14 or Tue 14-15 starting in the second week of the semester (Sep 27, 2016) | 1 Std. |
| A.‑S. Sznitman |
Katalogdaten
Kurzbeschreibung | Basics of probability theory and the theory of stochastic processes in discrete time |
Lernziel | This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned: Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains. |
Inhalt | This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned: Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains. |
Skript | available, will be sold in the course |
Literatur | R. Durrett, Probability: Theory and examples, Duxbury Press 1996 H. Bauer, Probability Theory, de Gruyter 1996 J. Jacod and P. Protter, Probability essentials, Springer 2004 A. Klenke, Wahrscheinlichkeitstheorie, Springer 2006 D. Williams, Probability with martingales, Cambridge University Press 1991 |
Leistungskontrolle
Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird) | |
Leistungskontrolle als Semesterkurs | |
ECTS Kreditpunkte | 10 KP |
Prüfende | A.-S. Sznitman |
Form | Sessionsprüfung |
Prüfungssprache | Englisch |
Repetition | Die Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich. |
Prüfungsmodus | mündlich 30 Minuten |
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan. |
Lernmaterialien
Keine öffentlichen Lernmaterialien verfügbar. | |
Es werden nur die öffentlichen Lernmaterialien aufgeführt. |
Gruppen
Keine Informationen zu Gruppen vorhanden. |
Einschränkungen
Keine zusätzlichen Belegungseinschränkungen vorhanden. |