Frederic Evers: Catalogue data in Autumn Semester 2020

Name Dr. Frederic Evers
Name variantsFrederic M. Evers
Frederic Evers
Address
V. Wasserbau, Hydrologie u. Glaz.
ETH Zürich, HIA C 52.2
Hönggerbergring 26
8093 Zürich
SWITZERLAND
Telephone+41 44 633 08 77
E-mailevers@vaw.baug.ethz.ch
URLhttp://www.fmevers.net
DepartmentCivil, Environmental and Geomatic Engineering
RelationshipLecturer

NumberTitleECTSHoursLecturers
101-1249-00LHydraulics of Engineering Structures3 credits2GI. Albayrak, F. Evers
AbstractHydraulic fundamentals are applied to hydraulic structures for wastewater, flood protection and hydropower. Typical case studies from engineering practice are further described.
Learning objectiveUnderstanding and quantification of fundamental hydraulic processes with particular focus on hydraulic structures for wastewater, flood protection and hydropower
Content1. Introduction & Basic equations
2. Losses in flow & Maximum discharge
3. Uniform flow & Critical flow
4. Hydraulic jump & Stilling basin
5. Backwater curves
6. Weirs & End overfall
7. Sideweir & Side channel
8. Bottom opening, Venturi & Culverts, Restrictors, Inverted siphons
9. Fall manholes & Vortex drop
10. Supercritical flow & Special manholes
11. Aerated flows & Low level outlets
12. Hydraulics of sediment bypass tunnels
13. Vegetated flows - Introduction & Application
14. Summary
Lecture notesText books

Hager, W.H. (2010). Wastewater hydraulics. Springer: New York.
LiteratureExhaustive references are contained in the suggested text book.
102-0527-00LExperimental and Computer Laboratory I (Year Course) Restricted registration - show details 0 credits6PD. Braun, L. Biolley, F. Evers, M. Floriancic, P. U. Lehmann Grunder, B. Lüthi, S. Pfister, D. A. Silva Conde, A. Stritih, D. F. Vetsch, L. von Känel
AbstractIn the Experimental and Computer Laboratory students are introduced to research and good scientific practice. Experiments are conducted in different disciplines of environmental engineering. Data collected during experiments are compared to the corresponding numeric simulations. The results are documented in reports or presentations.
Learning objectiveThe student will learn the following skills: basic scientific work, planning and conducting scientific experiments, uncertainty estimations of measurements, applied numerical simulations, modern sensor technology, writing reports.
ContentThe Experimental and Computer Laboratory is building on courses in the corresponding modules. Material from these courses is a prerequisite or co-requisite (as specified below) for participating in the Experimental and Computer Laboratory (MODULE: Project in the Experimental and Computer Laboratory):
- WatInfra: Water Network Management
- UWM: SysUWM + ProcUWM: Operation of Lab-WWTP
- AIR: Air Quality Measurements
- WasteBio: Anaerobic Digestion
- WasteRec: Plastic Recycling
- ESD: Environmental Assessment
- GROUND: Groundwater Field Course Kappelen
- WRM: Modelling Optimal Water Allocation
- FLOW: 1D Open Channel Flow Modelling
- LAND: Landscape Planning and Environmental Systems
- RIVER: Discharge Measurements
- HydEngr: Hydraulic Experiments
- RemSens: Earth Observation and Landscape Planning
- SOIL: Soil and Environmental Measurements Lab
Lecture notesWritten material will be available.