Thomas Tancogne-Dejean: Catalogue data in Autumn Semester 2022 |
Name | Dr. Thomas Tancogne-Dejean |
Address | KI in Mechanik und Fertigung ETH Zürich, PFA G 17 Technoparkstrasse 1 8005 Zürich SWITZERLAND |
Telephone | +41 44 633 92 68 |
thomatan@ethz.ch | |
Department | Mechanical and Process Engineering |
Relationship | Lecturer |
Number | Title | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0525-00L | Dynamic Behavior of Materials | 4 credits | 2V + 2U | T. Tancogne-Dejean, C. Roth | |||||||||||||||||||||||||||||||||||
Abstract | Lectures and computer labs concerned with the modeling of the deformation response and failure of engineering materials (metals, polymers and composites) subject to extreme loadings during manufacturing, crash, impact and blast events. | ||||||||||||||||||||||||||||||||||||||
Objective | Students will learn to apply, understand and develop computational models of a large spectrum of engineering materials to predict their dynamic deformation response and failure in finite element simulations. Students will become familiar with important dynamic testing techniques to identify material model parameters from experiments. The ultimate goal is to provide the students with the knowledge and skills required to engineer modern multi-material solutions for high performance structures in automotive, aerospace and naval engineering. | ||||||||||||||||||||||||||||||||||||||
Content | Topics include temperature and strain rate dependent elasto-plasticity, dynamic brittle and ductile fracture; impulse transfer, impact and wave propagation in solids; computational aspects of material model implementation; simulation of dynamic failure of structures; | ||||||||||||||||||||||||||||||||||||||
Lecture notes | Slides of the lectures, relevant journal papers and user manuals will be provided. | ||||||||||||||||||||||||||||||||||||||
Literature | Various books will be recommended pertaining to the topics covered. | ||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Course in continuum mechanics (mandatory), finite element method (recommended) | ||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||
151-3207-00L | Lightweight | 4 credits | 2V + 2U | P. Ermanni, T. Tancogne-Dejean, M. Zogg | |||||||||||||||||||||||||||||||||||
Abstract | The elective course Lightweight includes numerical methods for the analysis of the load carrying and failure behavior of lightweight structures, as well as construction methods and design principles for lightweight design. | ||||||||||||||||||||||||||||||||||||||
Objective | The goal of this course is to convey substantiated background for the understanding and the design and sizing of modern lightweight structures in mechanical engineering, vehicle and airplane design. | ||||||||||||||||||||||||||||||||||||||
Content | Lightweight design Thin-walled beams and structures Instability behavior of thin walled structures Reinforced shell structures Load introduction in lightweight structures Joining technology Sandwich design | ||||||||||||||||||||||||||||||||||||||
Lecture notes | Script, Handouts, Exercises |