Ender Konukoglu: Catalogue data in Autumn Semester 2020

Name Prof. Dr. Ender Konukoglu
FieldBiomedical Image Computing
Address
Biomedizinische Bildverarbeitung
ETH Zürich, ETF E 113
Sternwartstrasse 7
8092 Zürich
SWITZERLAND
Telephone+41 44 633 88 16
E-mailkender@vision.ee.ethz.ch
DepartmentInformation Technology and Electrical Engineering
RelationshipAssociate Professor

NumberTitleECTSHoursLecturers
227-0447-00LImage Analysis and Computer Vision Information 6 credits3V + 1UL. Van Gool, E. Konukoglu, F. Yu
AbstractLight and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition. Deep learning and Convolutional Neural Networks.
Learning objectiveOverview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
ContentThis course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.
The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.
The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.
Lecture notesCourse material Script, computer demonstrations, exercises and problem solutions
Prerequisites / NoticePrerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux.
The course language is English.
265-0102-00LHumans & Machines Restricted registration - show details
Only for CAS in Applied Information Technology and MAS in Applied Technology.
3 credits2VE. Konukoglu, A. M. Feit, C. Holz
AbstractThis module offers practical knowledge in visual information processing and human computer interactions.
Learning objectiveParticipants understand basic concepts of visual regonition and human-computer interaction systems.
ContentThe first part of the module will cover basic theoretical knowledge on visual recognition systems of the last two decades, mostly focusing on the most recent advancements in deep learning and convolutional neural networks. The theoretical knowledge will be supported with practical sessions that will allow participants to gain hands-on experience with most commonly used tools and deepen their understanding of the key concepts. The second part provides an introduction to the field of human-computer interaction, emphasising the central role of the user in system design. Through detailed case studies, students will be introduced to different methods used to analyse the user experience and shown how these can inform the design of new interfaces, systems and technologies.