Gil Georges: Catalogue data in Autumn Semester 2019

Name Dr. Gil Georges
URLhttp://n.ethz.ch/~ggeorges
DepartmentMechanical and Process Engineering
RelationshipLecturer

NumberTitleECTSHoursLecturers
151-0251-00LIC-Engines: Principles, Thermodynamic Optimization and Applications Restricted registration - show details
Number of participants limited to 60.
4 credits2V + 1UK. Boulouchos, C. Barro, G. Georges
AbstractIntroduction to characteristic parameters, operating maps and classification of internal combustion engines (ICE). Engine process thermodynamic, simplified simulations of the engine process, heat transfer in IC-engines, turbocharging and waste heat recovery systems. Fields of applications of IC-engines in transportation (incl. hybrid powertrains) and decentralized cogeneration of power and heat.
ObjectiveThe students learn the basic concepts of an internal combustion engine by means of the topics mentioned in the abstract. This knowledge is applied in several calculation exercises and two lab exercises at the engine test bench. The students get an insight in alternative powertrain systems.
Lecture notesin English
LiteratureJ. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill
166-0200-00LTechnology Potential: Powertrain, Systems and Energy Carriers Restricted registration - show details
Only for MAS in Future Transport Systems and CAS in Future Transport Systems: Technology Potential.
4 credits3GK. Boulouchos, G. Georges
AbstractThe module provides a foundation in the current situation and short- and middle-term development directions of powertrain and automotive engineering in the context of passenger & goods transport. Corresponding energy sources and resulting consequences for the energy system are addressed. Participants will be enabled to identify potentials of these technologies and apply them to concrete problems.
ObjectiveFamiliarity with conventional and alternative powertrain and automotive systems for future sustainable mobility, and the ability to identify and deploy their potential to address concrete problems.
Content- Drive component efficiency rates and core fields
- Drive and non-drive energy flow / Vehicle "driving resistance"
- Energy chains (operating power only) and CO2 emissions to primary energy
Lecture notesDistributed at start of module
LiteratureDistributed at start of module
Prerequisites / NoticeAnnounced to students of the of the MAS / CAS at the beginning of the term
701-0901-00LETH Week 2019: Rethinking Mobility Restricted registration - show details
All ETH Bachelor`s, Master`s and exchange students can take part in the ETH week. No prior knowledge is required
1 credit3SR. Knutti, K. Boulouchos, C. Bratrich, S. Brusoni, A. Cabello Llamas, E. Chatzi, M. Chli, F. Corman, E. Frazzoli, G. Georges, C. Onder, V. Wood
AbstractETH Week is an innovative one-week course designed to foster critical thinking and creative learning. Students from all departments as well as professors and external experts will work together in interdisciplinary teams. They will develop interventions that could play a role in solving some of our most pressing global challenges. In 2019, ETH Week will focus on the topic of mobility.
Objective- Domain specific knowledge: Students have immersed knowledge about a certain complex, societal topic which will be selected every year. They understand the complex system context of the current topic, by comprehending its scientific, technical, political, social, ecological and economic perspectives.

- Analytical skills: The ETH Week participants are able to structure complex problems systematically using selected methods. They are able to acquire further knowledge and to critically analyse the knowledge in interdisciplinary groups and with experts and the help of team tutors.

- Design skills: The students are able to use their knowledge and skills to develop concrete approaches for problem solving and decision making to a selected problem statement, critically reflect these approaches, assess their feasibility, to transfer them into a concrete form (physical model, prototypes, strategy paper, etc.) and to present this work in a creative way (role-plays, videos, exhibitions, etc.).

- Self-competence: The students are able to plan their work effectively, efficiently and autonomously. By considering approaches from different disciplines they are able to make a judgment and form a personal opinion. In exchange with non-academic partners from business, politics, administration, nongovernmental organisations and media they are able to communicate appropriately, present their results professionally and creatively and convince a critical audience.

- Social competence: The students are able to work in multidisciplinary teams, i.e. they can reflect critically their own discipline, debate with students from other disciplines and experts in a critical-constructive and respectful way and can relate their own positions to different intellectual approaches. They can assess how far they are able to actively make a contribution to society by using their personal and professional talents and skills and as "Change Agents".
ContentThe week is mainly about problem solving and design thinking applied to the complex world of energy. During ETH Week students will have the opportunity to work in small interdisciplinary groups, allowing them to critically analyse both their own approaches and those of other disciplines, and to integrate these into their work.

While deepening their knowledge about energy production, distribution and storage, students will be introduced to various methods and tools for generating creative ideas and understand how different people are affected by each part of the system. In addition to lectures and literature, students will acquire knowledge via excursions into the real world, empirical observations, and conversations with researchers and experts.

A key attribute of the ETH Week is that students are expected to find their own problem, rather than just solve the problem that has been handed to them.

Therefore, the first three days of the week will concentrate on identifying a problem the individual teams will work on, while the last two days are focused on generating solutions and communicating the team's ideas.
Prerequisites / NoticeNo prerequisites. Programme is open to Bachelor and Masters from all ETH Departments. All students must apply through a competitive application process at www.ethz.ch/ethweek. Participation is subject to successful selection through this competitive process.