Gunnar Jeschke: Catalogue data in Spring Semester 2023 |
Name | Prof. Dr. Gunnar Jeschke |
Field | Electron Paramagnetic Resonance |
Address | Inst. Mol. Phys. Wiss. ETH Zürich, HCI F 227 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telephone | +41 44 632 57 02 |
gunnar.jeschke@phys.chem.ethz.ch | |
Department | Chemistry and Applied Biosciences |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
529-0432-AAL | Physical Chemistry IV: Magnetic Resonance Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 4 credits | 9R | G. Jeschke, M. Ernst | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Theoretical foundations of magnetic resonance (NMR,EPR) and selected applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to magnetic resonance in isotropic and anisotropic phase. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course gives an introduction to magnetic resonance spectroscopy (NMR and EPR) in liquid, liquid crystalline and solid phase. It starts from a classical description in the framework of the Bloch equations. The implications of chemical exchange are studied and two-dimensional exchange spectroscopy is introduced. An introduction to Fourier spectroscopy in one and two dimensions is given and simple 'pulse trickery' is described. A quantum-mechanical description of magnetic resonance experiments is introduced and the spin Hamiltonian is derived. The chemical shift term as well as the scalar, dipolar and quadrupolar terms are discussed. The product-operator formalism is introduced and various experiments are described, e.g. polarization transfer. Applications in chemistry, biology, physics and medicine, e.g. determination of 3D molecular structure of dissolved molecules, determination of the structure of paramagnetic compounds and imaging (MRI) are presented. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | handed out in the lecture (in english) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | see http://www.ssnmr.ethz.ch/education/PC_IV_Lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0499-00L | Physical Chemistry | 0 credits | 1K | G. Jeschke, A. Barnes, M. Ernst, P. H. Hünenberger, F. Merkt, M. Reiher, J. Richardson, R. Riek, S. Riniker, T. Schmidt, R. Signorell, H. J. Wörner | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Seminar series covering current developments in Physical Chemistry | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Discussing current developments in Physical Chemistry | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-1025-00L | Physical Chemistry (for Pharmacy) | 3 credits | 2V + 1U | G. Jeschke, M. Yulikov | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Thermodynamic foundations of phase equilibria, intermolecular interactions, and molecular self-assembly; kinetics of chemical reactions and transport processes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course teaches physical-chemical foundations of important processes in cells and organisms as well as in galenics. Students learn: 1. Evaluation of chemical equilibria based on chemical potential 2. Interpretation of phase diagrams 3. Which interactions between molecules are important in living cells 4. Why molecules self-organize into aggregates 5. Which physical-chemical basics determine behavior of biomembranes 6. What determines the rate of chemical reactions, in particular also of enzymatically catalyzed reactions 7. What determines the transport rate of matter and heat | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | chemical potential, prediction of the direction of processes, phase equilibria, phase rule, phase diagrams of pure substances, colligative properties, osmosis, dialysis, surface tension, intermolecular interactions, hydrophobic effect, hydrophilic effect and denaturation, amphiphiles, basics of self-association, micelles, packing parameter, double layers, vesicles, membranes, elementary reactions, parallel reactions, consecutive reactions, Eyring theory, enzyme kinetics, diffusion, heat conduction, active transport | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Electronic lecture notes are available in Moodle and on epr.ethz.ch/education.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | In addition to the lecture script, the following two books can be used to gain deeper understanding Marc R. Roussel, A Life Scientist's Guide to Physical Chemistry, Cambridge University Press, 2012 Jacob Israelachvili, Intermolecular and Surface Forces, Academic Press, 1992 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Voraussetzungen: Physik II für Bio/Pharm. Wiss. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-1414-00L | Molecular and Structural Biology V: Studying Macromolecules by NMR and EPR | 4 credits | 2V | F. Allain, A. D. Gossert, G. Jeschke, K. Wüthrich | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course provides an overview of experimental methods for studying function and structure of macromolecules at atomic resolution in solution. The two main methods used are Nuclear Magnetic Resonance (NMR) spectroscopy and Electron Paramagnetic Resonance (EPR) spectroscopy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Insight into the methodology, areas of application and limitations of these two methods for studying biological macromolecules. Practical exercises with spectra to have hands on understanding of the methodology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Part I: Historical overview of structural biology. Part II: Basic concepts of NMR and initial examples of applications. 2D NMR and isotope labeling for studying protein function and molecular interactions at atomic level. Studies of dynamic processes of proteins in solution. Approaches to study large particles. Methods for determination of protein structures in solution. Part III: NMR methods for structurally characterizing RNA and protein-RNA complexes. Part IV: EPR of biomolecules | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | 1) Wüthrich, K. NMR of Proteins and Nucleic Acids, Wiley-Interscience. 2) Dominguez et al, Prog Nucl Magn Reson Spectrosc. 2011 Feb;58(1-2):1-61. 3) Duss O et al, Methods Enzymol. 2015;558:279-331. |