Name | Prof. Dr. Ralph Spolenak |
Field | Nanometallurgy |
Address | Institut für Metallforschung ETH Zürich, HCI G 511 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telephone | +41 44 632 25 90 |
Fax | +41 44 632 11 01 |
ralph.spolenak@mat.ethz.ch | |
URL | https://met.mat.ethz.ch/ |
Department | Materials |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
327-0513-00L | Mechanical Properties | 7 credits | 6G | R. Spolenak, F. J. Clemens, M. Schinhammer, A. Wahlen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course provides the fundamentals for understanding the mechanical properties of different classes of materials. The role played by the nano- and microstructure of the materials, how the mechanical properties are influenced by the composition or processing, as well as which methods can be used to determine material-specific mechanical parameters are examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students are able to - Apply the interplay of structure and properties in the selection and development of materials. - Understand plasticity, crack growth, high temperature properties, corrosion, diffusion, environmental influences, grain growth, fatigue, fracture mechanics across material classes. - to adjust mechanical properties in a targeted manner. - to select and develop the optimal materials for specific application areas by understanding the temperature-dependent material properties. - take measures to increase the service life of materials. - to link the similarities and differences of the various classes of materials. - understand concepts of material development and apply them to new materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This lecture has the irreversible mechanical deformation of materials as its core topic. Independent of the material classes, the following phenomena are explained in detail and rigorously derived: Crystal plasticity at low temperatures (dislocation theory, hardening mechanisms, twinning, brittle-ductile transitions), plasticity in disordered structures (shear bands and strain localisation), Fracture mechanics (Griffith criterion, Weibull statistics, crack tip plasticity, J-integral, R-curve), fatigue (Wöhler curves and Paris law), environmental influences, tribology, high temperature plasticity (creep and deformation mechanism diagrams). All phenomena are illustrated by actual case studies using concrete materials and material systems. These include aluminium alloys, steels, high temperature alloys, advanced ceramics, structural polymers and composites. The lecture is supported by exercises and practical experiments and uses material databases. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
327-0612-00L | Metals II Only for students materials science bachelor regulations 2017. | 3 credits | 2V + 1U | R. Spolenak, M. Schinhammer, A. Wahlen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to materials selection. Basic knowledge of major metallic materials: aluminium, magnesium, titanium, copper, iron and steel. Selected topics in high temperature materials: nickel and iron-base superalloys, intermetallics and refractory metals. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to materials selection. Basic knowledge of major metallic materials: aluminium, magnesium, titanium, copper, iron and steel. Selected topics in high temperature materials: nickel and iron-base superalloys, intermetallics and refractory metals. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course is devided into five parts: A. Materials selection Principles of materials properties maps Introduction to the 'Materials selector' software package Case studies B. Light metals and alloys Aluminium, magnesium, titanium Properties and hardening mechanisms Case studies in technological applications C. Copper and its alloys D. Iron and steel The seven pros for steel Fine grained steels, heat resistant steels Steel and corrosion phenomena Selection and application E. High temperature alloys Superalloys: iron, nickel, cobalt Intermetallics: properties and application | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Please visit the Moodle-link for this lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Gottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag Ashby/Jones, Engineering Materials 1 & 2, Pergamon Press Ashby, Materials Selection in Mechanical Design, Pergamon Press Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall Bürgel, Handbuch Hochtemperatur-Werkstofftechnik, Vieweg Verlag | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Metals I | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
327-0712-00L | Nanometallurgy | 0 credits | 2S | R. Spolenak | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Seminar for Ph.D. students and researchers in the area of nanometallurgy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Detailed education of researchers in the area of nanometallurgy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
327-1204-00L | Materials at Work I | 4 credits | 4S | R. Spolenak, E. Dufresne, R. Koopmans | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course attempts to prepare the student for a job as a materials engineer in industry. The gap between fundamental materials science and the materials engineering of products should be bridged. The focus lies on the practical application of fundamental knowledge allowing the students to experience application related materials concepts with a strong emphasis on case-study mediated learning. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Teaching goals: to learn how materials are selected for a specific application to understand how materials around us are produced and manufactured to understand the value chain from raw material to application to be exposed to state of the art technologies for processing, joining and shaping to be exposed to industry related materials issues and the corresponding language (terminology) and skills to create an impression of how a job in industry "works", to improve the perception of the demands of a job in industry | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course is designed as a two semester class and the topics reflect the contents covered in both semesters. Lectures and case studies encompass the following topics: Strategic Materials (where do raw materials come from, who owns them, who owns the IP and can they be substituted) Materials Selection (what is the optimal material (class) for a specific application) Materials systems (subdivisions include all classical materials classes) Processing Joining (assembly) Shaping Materials and process scaling (from nm to m and vice versa, from mg to tons) Sustainable materials manufacturing (cradle to cradle) Recycling (Energy recovery) After a general part of materials selection, critical materials and materials and design four parts consisting of polymers, metals, ceramics and coatings will be addressed. In the fall semester the focus is on the general part, polymers and alloy case studies in metals. The course is accompanied by hands-on analysis projects on everyday materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Manufacturing, Engineering & Technology Serope Kalpakjian, Steven Schmid ISBN: 978-0131489653 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Profound knowledge in Physical Metallurgy and Polymer Basics and Polymer Technology required (These subjects are covered at the Bachelor Level by the following lectures: Metalle 1, 2; Polymere 1,2) |