Joachim M. Buhmann: Catalogue data in Autumn Semester 2022 |
Name | Prof. em. Dr. Joachim M. Buhmann |
Field | Computer Science (Information Science and Engineering) |
Address | Institut für Maschinelles Lernen ETH Zürich, OAT Y 13.2 Andreasstrasse 5 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 31 24 |
Fax | +41 44 632 15 62 |
jbuhmann@inf.ethz.ch | |
URL | http://www.ml.inf.ethz.ch/ |
Department | Computer Science |
Relationship | Professor emeritus |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
252-0535-00L | Advanced Machine Learning | 10 credits | 3V + 2U + 4A | J. M. Buhmann, C. Cotrini Jimenez | |
Abstract | Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects. | ||||
Learning objective | Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data. | ||||
Content | The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data. Topics covered in the lecture include: Fundamentals: What is data? Bayesian Learning Computational learning theory Supervised learning: Ensembles: Bagging and Boosting Max Margin methods Neural networks Unsupservised learning: Dimensionality reduction techniques Clustering Mixture Models Non-parametric density estimation Learning Dynamical Systems | ||||
Lecture notes | No lecture notes, but slides will be made available on the course webpage. | ||||
Literature | C. Bishop. Pattern Recognition and Machine Learning. Springer 2007. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons, second edition, 2001. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, 2001. L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2004. | ||||
Prerequisites / Notice | The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution. PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points. | ||||
252-5051-00L | Advanced Topics in Machine Learning Number of participants limited to 40. The deadline for deregistering expires at the end of the fourth week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar. | 2 credits | 2S | J. M. Buhmann, R. Cotterell, N. He, F. Yang, M. El-Assady | |
Abstract | In this seminar, recent papers of the pattern recognition and machine learning literature are presented and discussed. Possible topics cover statistical models in computer vision, graphical models and machine learning. | ||||
Learning objective | The seminar "Advanced Topics in Machine Learning" familiarizes students with recent developments in pattern recognition and machine learning. Original articles have to be presented and critically reviewed. The students will learn how to structure a scientific presentation in English which covers the key ideas of a scientific paper. An important goal of the seminar presentation is to summarize the essential ideas of the paper in sufficient depth while omitting details which are not essential for the understanding of the work. The presentation style will play an important role and should reach the level of professional scientific presentations. | ||||
Content | The seminar will cover a number of recent papers which have emerged as important contributions to the pattern recognition and machine learning literature. The topics will vary from year to year but they are centered on methodological issues in machine learning like new learning algorithms, ensemble methods or new statistical models for machine learning applications. Frequently, papers are selected from computer vision or bioinformatics - two fields, which relies more and more on machine learning methodology and statistical models. | ||||
Literature | The papers will be presented in the first session of the seminar. |