Stefanie Hellweg: Catalogue data in Spring Semester 2016 |
Name | Prof. Dr. Stefanie Hellweg |
Field | Environmental Systems Design |
Address | Institut für Umweltingenieurwiss. ETH Zürich, HIF D 87.1 Laura-Hezner-Weg 7 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 43 37 |
Fax | +41 44 633 10 61 |
stefanie.hellweg@ifu.baug.ethz.ch | |
URL | https://esd.ifu.ethz.ch/the-group/people/person-detail.hellweg.html |
Department | Civil, Environmental and Geomatic Engineering |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
102-0324-01L | Ecological Systems Analysis | 6 credits | 4G + 1P | S. Hellweg, S. Rubli, N. von Götz | |
Abstract | This lecture deals with the methodological basics and application of various environmental assessment tools. | ||||
Learning objective | After attending the lecture, students know environmental assessment tools, such as material flow analysis, risk assessment, and life cycle assessment. They can identify and apply the appropriate tool in a given situation. Also, they are able to critically assess existing studies. | ||||
Content | - Überblick umweltrelevanter Güter- und Stoffflüsse - Umweltfragestellung und Entscheidungsprozesse: Praxisbeispiele - Einführung Stoffflussanalyse: Aktivitäten, Prozesse, Güter- und Stoffflüsse, Systemgrenzen, Transferkoeffizienten usw. - Einführung Bewertungsmethoden: Ökobilanz, Risikoanalyse, MIPS, ökologischer Fussabdruck, Exergie - einfache Modelle und Fallbeispiele aus der Praxis | ||||
Lecture notes | Skript und Übungsunterlagen werden elektronisch verteilt. | ||||
Literature | Catalogue data (Literature): http://www.esd.ifu.ethz.ch/studium/lectures/2016/bachelor-studies/oekologische-systemanalyse.html | ||||
Prerequisites / Notice | Die Lehrveranstaltung ist aufgeteilt in Vorlesungsstunden und Übungsstunden. | ||||
102-0348-00L | Prospective Environmental Assessments Prerequisite for this lecture is basic knowledge of environmental assessment tools, such as material flow analysis, risk assessment and life cycle assessment. Students without previous knowledge in these areas need to read according textbooks prior to or at the beginning of the lecture. | 3 credits | 2G | S. Hellweg, A. Spörri, M. A. Streicher-Porte | |
Abstract | This lecture deals with prospective assessments of emerging technologies as well as with the assessment of long-term environmental impact caused by today's activities. | ||||
Learning objective | -Aquiring knowledge about prospective environmental asessements, including scenario analysis techniques, prospective emission models, dynamic MFA and LCA -Ability to properly plan and conduct prospective environmental assessment studies, either on emerging technologies or on technical processes that cause long-term environmental impacts. -Being aware of the uncertainties involved in prospective studies. -Getting to know measures to prevent long-term emissions or impact in case studies -Knowing the arguments in favor and against a temporally diffentiated weighting of environmental impacts (discounting) | ||||
Content | - Scenario analysis - Dynamic material flow analysis - Temporal differentiation in LCA - Assessment of future and present environmental impact - Case studies (nanotechnology, e-waste, landfills, energy) | ||||
Lecture notes | Lecture slides and further documents will be made available in the lecture | ||||
227-1631-00L | Energy System Analysis | 4 credits | 3G | G. Andersson, S. Hellweg, F. Noembrini, A. Schlüter | |
Abstract | The course provides an introduction to the methods and tools for analysis of energy consumption, energy production and energy flows. Environmental aspects are included as well as economical considerations. Different sectors of the society are discussed, such as electric power, buildings, and transportation. Models for energy system analysis planning are introduced. | ||||
Learning objective | The purpose of the course is to give the participants an overview of the methods and tools used for energy systems analysis and how to use these in simple practical examples. | ||||
Content | The course gives an introduction to methods and tools for analysis of energy consumption, energy production and energy flows. Both larger systems, e.g. countries, and smaller systems, e.g. industries, homes, vehicles, are studied. The tools and methods are applied to various problems during the exercises. Different conventions of energy statistics used are introduced. The course provides also an introduction to energy systems models for developing scenarios of future energy consumption and production. Bottom-up and Top-Down approaches are addressed and their features and applications discussed. The course contains the following parts: Part I: Energy flows and energy statistics Part II: Environmental impacts Part III: Electric power systems Part IV: Energy in buildings Part V: Energy in transportation Part VI: Energy systems models | ||||
Lecture notes | Handouts | ||||
Literature | K. Blok: Introduction to Energy Analysis, Techne Press, Amsterdam 2006, ISBN 90-8594-016-8 | ||||
860-0015-00L | Supply and Responsible Use of Mineral Resources I | 3 credits | 2G | C. A. Heinrich, L. Bretschger, F. Brugger, S. Hellweg, B. Wehrli | |
Abstract | Students critically assess the economic, social, political, and environmental implications of extracting and using energy resources, metals, and bulk materials along the mineral resource cycle for society. They explore various decision-making tools that support policies and guidelines pertaining to mineral resources, and gain insight into different perspectives from government, industry, and NGOs. | ||||
Learning objective | Students will be able to: - Explain basic concepts applied in resource economics, economic geology, extraction, processing and recycling technologies, environmental and health impact assessments, resource governance, and secondary materials. - Evaluate the policies and guidelines pertaining to mineral resource extraction. - Examine decision-making tools for mineral resource related projects. - Engage constructively with key actors from governmental organizations, mining and trading companies, and NGOs, dealing with issues along the mineral resource cycle. | ||||
Literature | URL: https://moodle-app2.let.ethz.ch/course/view.php?id=1403 | ||||
Prerequisites / Notice | Seven week course offered from February 23rd to April 14th. This course is prerequisite for the case study module course 860-0016-00 Supply and Responsible Use of Mineral Resources II. Bachelor of Science or Engineering, and enrolled in a Master's or PhD program at ETH Zurich. |