Urs Lang: Catalogue data in Autumn Semester 2022

Name Prof. Dr. Urs Lang
FieldMathematik
Address
Professur für Mathematik
ETH Zürich, HG G 27.3
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telephone+41 44 632 60 11
E-mailurs.lang@math.ethz.ch
URLhttp://www.math.ethz.ch/~lang
DepartmentMathematics
RelationshipFull Professor

NumberTitleECTSHoursLecturers
401-3533-DRLGeneralized Nonpositive Curvature Restricted registration - show details
Only for ZGSM (ETH D-MATH and UZH I-MATH) doctoral students. The latter need to register at myStudies and then send an email to Link with their name, course number and student ID. Please see Link
3 credits3VU. Lang
AbstractCAT(0) spaces, Busemann convex spaces, metric spaces with convex geodesic bicombings; injective metric spaces and injective hulls; Gromov hyperbolicity, Helly graphs and Helly groups; fixed points, barycenter constructions, and applications.
Objective
Lecture notesLectures notes will be provided.
Literature- M. R. Bridson, A. Haefliger: Metric Spaces of Non-Positive Curvature, Springer 1999
- A. Papadopoulos: Metric Spaces, Convexity and Nonpositive Curvature, EMS 2005
- U. Lang: Injective hulls of certain discrete metric spaces and groups, J. Topol. Anal. 5 (2013), 297-331
- D. Descombes, U. Lang: Convex geodesic bicombings and hyperbolicity, Geom. Dedicata 177 (2015), 367-384
- J. Chalopin et al.: Weakly Modular Graphs and Nonpositive Curvature, Memoirs AMS 268 (2020), no. 1309
- J. Chalopin et al.: Helly groups, arXiv:2002.06895v2 [math.GR]
Prerequisites / NoticeBasic knowledge of Riemannian geometry and functional analysis will be assumed.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
401-3533-71LGeneralized Nonpositive Curvature6 credits3VU. Lang
AbstractCAT(0) spaces, Busemann convex spaces, metric spaces with convex geodesic bicombings; injective metric spaces and injective hulls; Gromov hyperbolicity, Helly graphs and Helly groups; fixed points, barycenter constructions, and applications.
Objective
Lecture notesLecture notes will be provided.
Literature- M. R. Bridson, A. Haefliger: Metric Spaces of Non-Positive Curvature, Springer 1999
- A. Papadopoulos: Metric Spaces, Convexity and Nonpositive Curvature, EMS 2005
- U. Lang: Injective hulls of certain discrete metric spaces and groups, J. Topol. Anal. 5 (2013), 297-331
- D. Descombes, U. Lang: Convex geodesic bicombings and hyperbolicity, Geom. Dedicata 177 (2015), 367-384
- J. Chalopin et al.: Weakly Modular Graphs and Nonpositive Curvature, Memoirs AMS 268 (2020), no. 1309
- J. Chalopin et al.: Helly groups, arXiv:2002.06895v2 [math.GR]
Prerequisites / NoticeBasic knowledge of Riemannian geometry and functional analysis will be assumed.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
401-5530-00LGeometry Seminar Information 0 credits1KM. Burger, M. Einsiedler, P. Feller, A. Iozzi, U. Lang
AbstractResearch colloquium
Objective