Martin Scheringer: Catalogue data in Spring Semester 2020 |
Name | Prof. Dr. Martin Scheringer (Professor Leuphana Universität Lüneburg) |
Field | Chemical Engineering and Environmental Chemistry |
Address | Organische Umweltchemie ETH Zürich, CHN F 35.2 Universitätstrasse 16 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 30 62 |
Fax | +41 44 632 11 89 |
scheringer@usys.ethz.ch | |
URL | https://www.ethz.ch/content/specialinterest/chab/chemical-n-bioengineering/set-group/en.html |
Department | Environmental Systems Science |
Relationship | Privatdozent |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
701-0998-00L | Environmental and Human Health Risk Assessment of Chemicals | 3 credits | 2G | M. Scheringer, B. Escher | |
Abstract | Application of methods for chemical risk assessment for human health and the environmental according to European and Swiss regulation; hazard and risk; exposure and effect analysis for different types of chemicals. Estimation of missing chemical properties (QSAR methods); critical evaluation of risk assessment methods, presentation of alternative assessment methods. | ||||
Learning objective | The students are familiar with regulatory approaches to human and environmental risk assessment of chemicals and can perform the main steps of a regulatory risk assessment for an industrial chemical. They are aware of pitfalls and challenges and know about new approaches to risk assessment. | ||||
Content | Regulatory methods for environmental risk assessment of chemicals (industrial chemicals, pesticides, pharmaceuticals), European regulation REACH, Swiss regulations, international approaches - Human vs. environmental risk assessment - Classification and labelling of chemicals - PBT assessment (persistence, bioaccumulation, toxicity) - Exposure analysis: emission patterns, multimedia fate and transport models for quantifying environmental exposure, Long range transport and persistence, predicted and measured exposure concentration for the environment and humans - Effect analysis: estimation of hazard potential for ecotoxicity and human health, extrapolation methods, classification of chemicals according to modes of toxic action, predictive models (QSAR) - Risk assessment methods (deterministic vs. probabilistic), risk assessment vs. hazard assessment, risk management - uncertainty and sensitivity analyses, precautionary principle - Environmental Quality Assessment (water, sediment, biota), Water Framework Directive) - New methods in environmental risk assessment: mixtures, temporally and spatially explicit risk assessment | ||||
Lecture notes | Slides of lectures, lecture notes for selected chapters and additional reading material will be made available via ILIAS. Also templates for the exercises and the report will be made available via ILIAS. | ||||
Literature | - Van Leeuwen, C.J., Vermeire, T. (Eds.) Risk Assessment of Chemicals: An Introduction. Springer, 2007 (als e-book in der ETH-Bibliothek verfügbar). - Scheringer, M., Persistence and Spatial Range of Environmental Chemicals. Wiley-VCH, Weinheim, 2002. | ||||
Prerequisites / Notice | Block course: Lecture and accompanying exercise where students conduct a comprehensive risk assessment for one selected chemical each according to the European regulation for industrial chemicals. The risk assessment will be presented in class and has to be compiled in a written technical report (Chemical dossier) that will be graded. The overall work load is 90 hours with 30 hours contact time (block course) and 60 hours self-study. | ||||
701-1240-00L | Modelling Environmental Pollutants | 3 credits | 2G | M. Scheringer, C. Bogdal | |
Abstract | Modeling the emissions, transport, partitioning and transformation/degradation of chemical contaminants in air, water and soil. | ||||
Learning objective | This course is intended for students who are interested in the environmental fate and transport of volatile and semi-volatile organic chemicals and exposure to pollutants in environmental media including air, water, soil and biota. The course focuses on the theory and application of mass-balance models of environmental pollutants. These models are quantitative tools for describing, understanding, and predicting the way pollutants interact with the environment. Important topics include thermodynamic and kinetic descriptions of chemical behavior in environmental systems; mechanisms of chemical degradation in air and other media; novel approaches to modeling chemical fate in a variety of environments, including lakes and rivers, generic regions, and at the global scale, and application of mass balance modeling principles to describe bioaccumulation of pollutants by fish and mammals. | ||||
Content | Application of mass balance principles to chemicals in a system of coupled environmental media. Measurement and estimation of physico-chemical properties that determine the environmental behavior of chemicals. Thermodynamic and kinetic controls on the behavior of pollutants. Modeling environmental persistence, bioaccumulation and long-range transport potential of chemicals, including a review of available empirical data on various degradation processes. Current issues in multimedia contaminant fate modeling and a case study of the student's choice. | ||||
Lecture notes | Material to support the lectures will be distributed during the course. | ||||
Literature | There is no required text. The following texts are useful for background reading and additional information. D. Mackay. Multimedia Environmental Models: The Fugacity Approach, 2nd Ed. 2001. CRC Press. R. P. Schwarzenbach, P. M. Gschwend, D. M. Imboden. Environmental Organic Chemistry. 2nd Ed. 2003, John Wiley & Sons. M. Scheringer. Persistence and spatial range of environmental chemicals: New ethical and scientific concepts for risk assessment. 2002. Wiley-VCH. |