Uwe Sauer: Catalogue data in Autumn Semester 2019 |
Name | Prof. Dr. Uwe Sauer |
Field | Systembiologie |
Address | Inst. f. Molekulare Systembiologie ETH Zürich, HPM H 28 Otto-Stern-Weg 3 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 36 72 |
sauer@imsb.biol.ethz.ch | |
Department | Biology |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
551-0001-AAL | General Biology I Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 3 credits | 6R | U. Sauer, O. Y. Martin, A. Widmer | |
Abstract | Organismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny. | ||||
Learning objective | The understanding of basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life. | ||||
Content | The first semester focuses on the organismal biology aspects of genetics, evolution and diversity of life in the Campbell chapters 12-34. Week 1-7 by Alex Widmer, Chapters 12-25 12 Cell biology Mitosis 13 Genetics Sexual life cycles and meiosis 14 Genetics Mendelian genetics 15 Genetics Linkage and chromosomes 20 Genetics Evolution of genomes 21 Evolution How evolution works 22 Evolution Phylogentic reconstructions 23 Evolution Microevolution 24 Evolution Species and speciation 25 Evolution Macroevolution Week 8-14 by Oliver Martin, Chapters 26-34 26 Diversity of Life Introdution to viruses 27 Diversity of Life Prokaryotes 28 Diversity of Life Origin & evolution of eukaryotes 29 Diversity of Life Nonvascular&seedless vascular plants 30 Diversity of Life Seed plants 31 Diversity of Life Introduction to fungi 32 Diversity of Life Overview of animal diversity 33 Diversity of Life Introduction to invertebrates 34 Diversity of Life Origin & evolution of vertebrates | ||||
Lecture notes | No script | ||||
Literature | Campbell et al. (2015) Biology - A Global Approach. 10th Edition (Global Edition) | ||||
Prerequisites / Notice | This is a virtual self-study lecture for non-german speakers of the "Allgemeine Biology I (551-0001-00L) lecture. The exam will be written jointly with the participants of this lecture. Example exam questions will be discussed during the lectures, and old exam questions are kept by the various student organisations. If necessary, please contact Prof. Uwe Sauer (sauer@ethz.ch) for details regarding the exam. | ||||
551-0001-00L | General Biology I | 3 credits | 3V | U. Sauer, O. Y. Martin, A. Widmer | |
Abstract | Organismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny. First in a series of two lectures given over two semesters for students of agricultural and food sciences, as well as of environmental sciences. | ||||
Learning objective | The understanding of some basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life. | ||||
Content | The first semester focuses on the organismal biology aspects of genetics, evolution and diversity of life in the Campbell chapters 12-34. Week 1-7 by Alex Widmer, Chapters 12-25 12 Cell biology Mitosis 13 Genetics Sexual life cycles and meiosis 14 Genetics Mendelian genetics 15 Genetics Linkage and chromosomes 20 Genetics Evolution of genomes 21 Evolution How evolution works 22 Evolution Phylogentic reconstructions 23 Evolution Microevolution 24 Evolution Species and speciation 25 Evolution Macroevolution Week 8-14 by Oliver Martin, Chapters 26-34 26 Diversity of Life Introdution to viruses 27 Diversity of Life Prokaryotes 28 Diversity of Life Origin & evolution of eukaryotes 29 Diversity of Life Nonvascular&seedless vascular plants 30 Diversity of Life Seed plants 31 Diversity of Life Introduction to fungi 32 Diversity of Life Overview of animal diversity 33 Diversity of Life Introduction to invertebrates 34 Diversity of Life Origin & evolution of vertebrates | ||||
Lecture notes | no script | ||||
Literature | Campbell et al. (2015) Biology - A Global Approach. 10th Edition (Global Edition | ||||
Prerequisites / Notice | The lecture is the first in a series of two lectures given over two semesters for students with biology as as a basic subject. | ||||
551-0003-AAL | General Biology I+II Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 7 credits | 13R | U. Sauer, R. Aebersold, W. Gruissem, O. Y. Martin, A. Widmer | |
Abstract | General Biology I: Organismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny. General Biology II: Molecular biology approach to teach the basic principles of biochemistry, cell biology, cgenetics, evolutionary biology and form and function of vacular plants. | ||||
Learning objective | General Biology I: The understanding of basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life. General Biology II: The understanding basic concepts of biology: the hierarchy of the structural levels of biological organisation, with particular emphasis on the cell and its molecular functions, the fundamentals of metabolism and molecular genetics, as well as form and function of vascular plants. | ||||
Content | General Biology I: General Biology I focuses on the organismal biology aspects of genetics, evolution and diversity of life in the Campbell chapters 12-34. Week 1-7 by Alex Widmer, Chapters 12-25 12 Cell biology Mitosis 13 Genetics Sexual life cycles and meiosis 14 Genetics Mendelian genetics 15 Genetics Linkage and chromosomes 20 Genetics Evolution of genomes 21 Evolution How evolution works 22 Evolution Phylogentic reconstructions 23 Evolution Microevolution 24 Evolution Species and speciation 25 Evolution Macroevolution Week 8-14 by Oliver Martin, Chapters 26-34 26 Diversity of Life Introdution to viruses 27 Diversity of Life Prokaryotes 28 Diversity of Life Origin & evolution of eukaryotes 29 Diversity of Life Nonvascular&seedless vascular plants 30 Diversity of Life Seed plants 31 Diversity of Life Introduction to fungi 32 Diversity of Life Overview of animal diversity 33 Diversity of Life Introduction to invertebrates 34 Diversity of Life Origin & evolution of vertebrates General Biology II: The structure and function of biomacromolecules; basics of metabolism; tour of the cell; membrane structure and function; basic energetics of cellular processes; respiration, photosynthesis; cell cycle, from gene to protein; structure and growth of vascular plants, resource acquisition and transport, soil and plant nutrition. Specifically the following Campbell chapters will be covered: 3 Biochemistry Chemistry of water 4 Biochemistry Carbon: the basis of molecular diversity 5 Biochemistry Biological macromolecules and lipids 7 Cell biology Cell structure and function 8 Cell biology Cell membranes 10 Cell biology Respiration: introduction to metabolism 10 Cell biology Cell respiration 11 Cell biology Photosynthetic processes 16 Genetics Nucleic acids and inheritance 17 Genetics Expression of genes 18 Genetics Control of gene expression 19 Genetics DNA Technology 35 Plant structure&function Plant Structure and Growth 36 Plant structure&function Transport in vascular plants 37 Plant structure&function Plant nutrition 38 Plant structure&function Reproduction of flowering plants 39 Plant structure&function Plants signal and behavior | ||||
Lecture notes | No script | ||||
Literature | Campbell et al. (2015) Biology - A Global Approach. 10th Edition (Global Edition) | ||||
Prerequisites / Notice | Basic general and organic chemistry This is a virtual self-study lecture for non-German speakers of the "Allgemeine Biology I (551-0001-00L) and "Allgemeine Biology II (551-0002-00L) lectures. The exam will be written jointly with the participants of this lecture. | ||||
551-1153-00L | Systems Biology of Metabolism Number of participants limited to 15. | 4 credits | 2V | U. Sauer, N. Zamboni, M. Zampieri | |
Abstract | Starting from contemporary biological problems related to metabolism, the course focuses on systems biological approaches to address them. In a problem-oriented, this-is-how-it-is-done manner, we thereby teach modern methods and concepts. | ||||
Learning objective | Develop a deeper understanding of how relevant biological problems can be solved, thereby providing advanced insights to key experimental and computational methods in systems biology. | ||||
Content | The course will be given as a mixture of lectures, studies of original research and guided discussions that focus on current research topics. For each particular problem studied, we will work out how the various methods work and what their capabilities/limits are. The problem areas range from microbial metabolism to cancer cell metabolism and from metabolic networks to regulation networks in populations and single cells. Key methods to be covered are various modeling approaches, metabolic flux analyses, metabolomics and other omics. | ||||
Lecture notes | Script and original publications will be supplied during the course. | ||||
Prerequisites / Notice | The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good knowledge of biochemistry and basics of mathematics and chemistry. |