Loïc Pellissier: Katalogdaten im Herbstsemester 2021

NameHerr Prof. Dr. Loïc Pellissier
LehrgebietLandschaftsökologie
Adresse
Ökosysteme u. Landschaftsevolution
ETH Zürich, CHN F 29.2
Universitätstrasse 16
8092 Zürich
SWITZERLAND
Telefon+41 44 632 32 03
E-Mailloic.pellissier@usys.ethz.ch
DepartementUmweltsystemwissenschaften
BeziehungAusserordentlicher Professor

NummerTitelECTSUmfangDozierende
701-0553-00LLandschaftsökologie Information 3 KP2GF. Kienast, L. Pellissier
KurzbeschreibungDer Kurs bietet eine Einführung in die Landschaftsökologie und Landschaftsmodellierung und gibt Einblick in verschiedene praktische Anwendungen der Landschaftsökologie im Natur- und Landschaftsmanagement.
LernzielDie Studierenden können
- die Konzepte und Methoden der Landschaftsanalyse beispielhaft erklären und anwenden.
- die Ursachen und Auswirkungen von Landschaftsveränderungen anhand von Beispielen und Simulationen erläutern.
- praktische Anwendungen der Landschaftsökologie im Natur- und Landschaftsmanagement beschreiben.
InhaltDie Inhalte der Vorlesung sind:
- wichtige Begriffe und Einführung in die Disziplin Landschaftsökologie
- Landschaftsmuster analysieren (metrics)
- Landschaften modellieren
- Landschaftswahrnehmung
- wichtige Inventare für den Natur- und Landschaftsschutz
Die Inhalte werden mit Beispielen aus der Praxis ergänzt.
SkriptDie Vorlesung wird als MOOC (Edx) angeboten
Literaturin the MOOC
Voraussetzungen / BesonderesDie Vorlesung wird zusammen mit dem MOOC gestaltet.
Für diese Vorlesung und für den Teil Landschaftsökologie des Systempraktikums Wald und Landschaft (Frühlingssemester) ist der Besuch eines GIS Kurses empfehlenswert.
701-1679-00LLandscape Modelling of Biodiversity: From Global Changes to Conservation5 KP3GL. Pellissier, C. Graham, N. Zimmermann
KurzbeschreibungThe course provides the student with the spatial tools to address societal challenges toward ensuring the sustainable use of terrestrial ecosystems and the conservation of biodiversity. Students learn theory, tools and models during a few introductory sessions and apply this knowledge to solve a practical problem in groups related to climate change, land use change and biodiversity conservation.
LernzielStudents learn:
- Theoretical foundations of the species ecological niche
- Biodiversity concepts and global change impacts
- Basic concepts of spatial (& macro-) ecology
- Environmental impact assessment and planning
- Advanced statistical methods (GLM, GAM, CART) and basic programming (loops, functions, advanced scripting) in the statistical environment R.
- The use of GIS functionality in R
Inhalt1. The basics:
Introduction to the concept of the ecological niche, and biodiversity theories. Overview of the knowledge on expected biodiversity response to global changes and conservation planning methods.
Introduction to the statistical methods of Generalized Linear (GLM) and Generalized Additive models (GAM), and Classification and Regression Trees (CART). Introduction to basic GIS and programming elements in the statistical environment R.
2. The class project:
Students form groups of two, and each group solves a series of applied questions independently in R using the techniques taught in the introductory classes. The students then prepare a presentation and report of the obtained results that will be discussed during a mini-symposium. Each team choses one of the following topics for the class project:
a) Linking climate change velocities to species' migration capacities
b) Explaining and modelling land use change in Switzerland
c) Explaining and modelling biodiversity changes in Switzerland
d) Designing biodiversity conservation strategies under global changes.
Voraussetzungen / BesonderesBasic knowledge in statistics (OLS regression, test statistics), and basic knowledge in geographic information science.
701-3001-00LEnvironmental Systems Data Science Belegung eingeschränkt - Details anzeigen 3 KP2GL. Pellissier, J. Payne, B. Stocker
KurzbeschreibungStudents are introduced to a typical data science workflow using various examples from environmental systems. They learn common methods and key aspects for each step through practical application. The course enables students to plan their own data science project in their specialization and to acquire more domain-specific methods independently or in further courses.
LernzielThe students are able to
● frame a data science problem and build a hypothesis
● describe the steps of a typical data science project workflow
● conduct selected steps of a workflow on specifically prepared datasets, with a focus on choosing, fitting and evaluating appropriate algorithms and models
● critically think about the limits and implications of a method
● visualise data and results throughout the workflow
● access online resources to keep up with the latest data science methodology and deepen their understanding
Inhalt● The data science workflow
● Access and handle (large) datasets
● Prepare and clean data
● Analysis: data exploratory steps
● Analysis: machine learning and computational methods
● Evaluate results and analyse uncertainty
● Visualisation and communication
Voraussetzungen / Besonderes252-0840-02L Anwendungsnahes Programmieren mit Python
401-0624-00L Mathematik IV: Statistik
401-6215-00L Using R for Data Analysis and Graphics (Part I)
401-6217-00L Using R for Data Analysis and Graphics (Part II)
701-0105-00L Mathematik VI: Angewandte Statistik für Umweltnaturwissenschaften