Anton Wutz: Katalogdaten im Herbstsemester 2023 |
Name | Herr Prof. Dr. Anton Wutz |
Lehrgebiet | Genetik |
Adresse | Inst. f. Molecular Health Sciences ETH Zürich, HPL E 12 Otto-Stern-Weg 7 8093 Zürich SWITZERLAND |
Telefon | +41 44 633 08 48 |
awutz@ethz.ch | |
Departement | Biologie |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
551-0127-00L | Fundamentals of Biology III: Multicellularity | 8 KP | 6G | M. Stoffel, M. Künzler, O. Y. Martin, U. Suter, S. Werner, A. Wutz, S. C. Zeeman | ||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Vermittelt werden die grundlegenden Konzepte der Multizellularität, mit Schwerpunkt auf der molekularen Basis multizellularer biologischer Systeme und ihrer funktionellen Integration in kohärente Ganzheiten. Die strukturelle und funktionelle Spezialisierung wird anhand gemeinsamer und spezifischer Funktionen bei Pilzen, Pflanzen und Tieren (einschließlich des Menschen) diskutiert. | |||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | 1. Die Studierenden können Vorteile und Herausforderungen, die mit dem Vielzellersein verbunden sind, beschreiben und eigenständige Lösungen skizzieren, die Organismen entwickelt haben, um mit den Herausforderungen der komplexen Vielzelligkeit umzugehen. 2. Die Studierenden können erklären, wie die inneren und äußeren Strukturen von Pilzen, Pflanzen und Tieren funktionieren, um Überleben, Wachstum, Verhalten und Fortpflanzung zu unterstützen. 3. Die Studierenden können die grundlegenden Wege und Mechanismen der zellulären Kommunikation erklären, die das zelluläre Verhalten regulieren (Zelladhäsion, Stoffwechsel, Proliferation, Reproduktion, Entwicklung). 4. Die Studierenden können beschreiben, wie sich aus einer einzelnen Zelle viele Zellen entwickeln, die jeweils unterschiedliche spezialisierte Funktionen haben. | |||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Die Vorlesung führt in die strukturelle und funktionelle Spezialisierung bei Pilzen, Pflanzen und Tieren, einschließlich des Menschen, ein. Nach einem Überblick über die Vielfalt der eukaryotischen Organismen wird diskutiert, wie Pilze, Pflanzen, Tiere und Menschen Strukturen und Strategien entwickelt haben, um mit den Herausforderungen der Vielzelligkeit zurechtzukommen. Die molekularen Grundlagen der Kommunikation, Koordination und Differenzierung werden vermittelt und durch Schlüsselaspekte der Reproduktion, des Stoffwechsels, der Entwicklung und der Regeneration ergänzt. Die Themen umfassen Form und Funktion von Pilzen und Pflanzen, menschliche Anatomie und Physiologie, Stoffwechsel, Zellsignalisierung, Adhäsion, Stammzellen, Regeneration, Reproduktion und Entwicklung. | |||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Alberts et al. 'Molecular Biology of the Cell' 6. Auflage Smith A.M., et al. "Pflanzenbiologie" Garland Science, New York, Oxford Campbell "Biologie", 11. Auflage | |||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Einige Vorlesungseinheiten werden in englischer Sprache gehalten. | |||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||
551-1201-00L | Computational Methods in Genome and Sequence Analysis Number of participants limited to 7. The enrolment is done by the D-BIOL study administration. | 6 KP | 7P | A. Wutz | ||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course aims to provide students with a comprehensive overview of computational methods for sequence analysis and assist with developing skills for application of computational approaches by experimental scientists in the life sciences. | |||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Methods for analyzing animal genomes are increasingly becoming important for applications in human health and biotechnology suggesting that the experience will be useful to develop relevant expertise for a broad range of functions. Students will have the opportunity to advance their knowledge in programming by focusing on algorithms for genome and gene sequence analysis. A major goal of the course will be to lead the student to an independent and empowered attitude towards computational problems. For reaching this goal the students will work on an implementation of a solution for a set real-world problem in genome and sequence analysis under guided supervision. | |||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | •Understanding the information in biological sequences and quantifying similarity •Introduction to algorithms for sequence comparison and searches •Implementation of sequence comparisons and searches in Python •Accessing data formats associated with genome sequence analysis tasks •Understanding the anatomy of a real world sequence analysis project •Applying tools for sequence alignment and estimating error rates •Ability to implement a solution to a problem in sequence analysis using Python •Accessing genome annotation and retrieving relevant information in Pandas •Application of Genomic intervals and arrays for sequence analysis with HTSeq The course will consist of a series of lectures, assignments for implementing elementary tasks in Python, project development and discussion workshops, and 3 and a half week of practical work implementing a Pythons script as a solution to a real world problem associated with sequence analysis. At the end of the course students will explain their solutions and demonstrate the functionality of their implementations, which will then be discussed and commented on by the group. It is expected that students will be able to apply the knowledge to improve on concrete problems. | |||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | - It is recommended to bring your own computer with a Python installation to the course - simple computers can be provided - Programming basics with Python | |||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||
551-1709-00L | Genomic and Genetic Methods in Cell and Developmental Biology Number of participants limited to 8. The enrolment is done by the D-BIOL study administration. | 6 KP | 7P | A. Wutz, M. Kopf, T. Schroeder | ||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course aims to provide students with a comprehensive overview of mammalian developmental biology and stem cell systems both on the theoretical as well as the experimental level. Centering the course on genetic and genomic methods engages the students in contemporary research and prepares for future studies in the course of semester and master projects. | |||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | - Understanding mammalian development - Introduction to stem cells systems - Working with cultured cells - Translational aspects of mammalian cell biology | |||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course will consist of a series of lectures, assay assignments, project development and discussion workshops, and 2 and a half week of lab work with different mammalian cell systems embedded in real life research projects. At the end of the course students will take an exam consisting of questions on the topic of the lectures and workshops. It is expected that students will be able to apply the knowledge to concrete problems. | |||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
|