Torsten Hoefler: Katalogdaten im Herbstsemester 2018

NameHerr Prof. Dr. Torsten Hoefler
LehrgebietSkalierbares Parallelrechnen
Adresse
Inst. f. Hochleistungsrechnersyst.
ETH Zürich, OAT V 15
Andreasstrasse 5
8092 Zürich
SWITZERLAND
Telefon+41 44 632 63 44
E-Mailtorsten.hoefler@inf.ethz.ch
URLhttp://htor.inf.ethz.ch
DepartementInformatik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
252-0817-00LDistributed Systems Laboratory
Im Masterstudium können zusätzlich zu den Vertiefungsübergreifenden Fächern nur max. 10 Kreditpunkte über Laboratorien erarbeitet werden. Diese Labs gelten nur für das Masterstudium. Weitere Laboratorien werden auf dem Beiblatt aufgeführt.
10 KP9PG. Alonso, T. Hoefler, F. Mattern, T. Roscoe, A. Singla, R. Wattenhofer, C. Zhang
KurzbeschreibungThis course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including wireless networks, ad-hoc networks, RFID, and distributed applications on smartphones.
LernzielGain hands-on-experience with real products and the latest technology in distributed systems.
InhaltThis course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including as well wireless networks, ad-hoc networks, and distributed application on smartphones. The goal of the project is for the students to gain hands-on-experience with real products and the latest technology in distributed systems. There is no lecture associated to the course.
For information of the course or projects available, see https://www.dsl.inf.ethz.ch/ or contact Prof. Mattern, Prof. Wattenhofer, Prof. Roscoe or Prof. G. Alonso.
263-2800-00LDesign of Parallel and High-Performance Computing Information 7 KP3V + 2U + 1AT. Hoefler, M. Püschel
KurzbeschreibungAdvanced topics in parallel / concurrent programming.
LernzielUnderstand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large concurrent software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.
263-3504-00LHardware Acceleration for Data Processing Information
The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
2 KP2SG. Alonso, T. Hoefler, C. Zhang
KurzbeschreibungThe seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular.
LernzielThe seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular.
InhaltThe general application areas are big data and machine learning. The systems covered will include systems from computer architecture, high performance computing, data appliances, and data centers.
Voraussetzungen / BesonderesStudents taking this seminar should have the necessary background in systems and low level programming.