Rahul Pandharipande: Katalogdaten im Frühjahrssemester 2017

NameHerr Prof. Dr. Rahul Pandharipande
LehrgebietMathematik
Adresse
Professur für Mathematik
ETH Zürich, HG G 55
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 632 56 89
E-Mailrahul.pandharipande@math.ethz.ch
URLhttp://www.math.ethz.ch/~rahul
DepartementMathematik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
401-4142-17LAlgebraic Curves6 KP3GR. Pandharipande
KurzbeschreibungI will discuss the classical theory of algebraic curves. The topics will include:
divisors, Riemann-Roch, linear systems, differentials, Clifford's theorem,
curves on surfaces, singularities, curves in projective space, elliptic curves,
hyperelliptic curves, families of curves, moduli, and enumerative geometry.
There will be many examples and calculations.
Lernziel
InhaltLecture homepage: https://metaphor.ethz.ch/x/2017/fs/401-4142-17L/
LiteraturForster, "Lectures on Riemann Surfaces"

Arbarello, Cornalba, Griffiths, Harris, "Geometry of Algebraic Curves"

Mumford, "Curves and their Jacobians"
Voraussetzungen / BesonderesFor background, a semester course in algebraic geometry should be
sufficient (perhaps even if taken concurrently). You should know the definitions
of algebraic varieties and algebraic morphisms and their basic properties.
401-5000-00LZurich Colloquium in Mathematics Information 0 KPP. L. Bühlmann, M. Burger, S. Mishra, R. Pandharipande, Uni-Dozierende
KurzbeschreibungThe lectures try to give an overview of "what is going on" in important areas of contemporary mathematics, to a wider non-specialised audience of mathematicians.
Lernziel
401-5140-11LAlgebraic Geometry and Moduli Seminar Information 0 KP2KR. Pandharipande
KurzbeschreibungResearch colloquium
Lernziel
406-2303-AALComplex Analysis
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
6 KP13RR. Pandharipande
KurzbeschreibungComplex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, conformal mappings, Riemann mapping theorem.
Lernziel
LiteraturL. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co.

B. Palka: "An introduction to complex function theory."
Undergraduate Texts in Mathematics. Springer-Verlag, 1991.

R.Remmert: Theory of Complex Functions.. Springer Verlag

E.Hille: Analytic Function Theory. AMS Chelsea Publication
Voraussetzungen / BesonderesThe precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.